• Title/Summary/Keyword: Acid catalytic conversion

Search Result 111, Processing Time 0.027 seconds

Catalytic Dehydration of Methanol to Dimethyl Ether (DME) over Solid-Acid Catalysts

  • Jun, Ki-Won;Lee, Hye-Soon;Rho, Hyun-Seog;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.803-807
    • /
    • 2002
  • The conversion of dimethyl ether(DME) has been carried out over $\gamma-alumina$, silica-alumina, and modified $\gamma-aluminal$ catalysts. Especially, the water effect has been investigated on purpose to develop a suitable catalyst for one-step synthesis of DME from $CO_2$ hydrgenation, The $\gamma-Al_2O_3$ modified with 1 wt% silica is more active and less deactivated by water than unmodified one. $CO_2has$ no effect on catalytic dehydration of methanol to DME.

Catalytic Oxidation Conversion Characteristics of VOCs in Supercritical Fluid Media (초임계유체 반응매개상에서 VOCs의 촉매산화 전환특성)

  • 이승범;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.69-76
    • /
    • 2001
  • The catalytic oxidation of volatile organic compounds (VOCs), which were benzene and toluene, was studied in the supercritical carbon dioxide($SC-CO_2$) media. In $SC-CO_2$ media, the deep oxidation conversion of VOCs was increased with the temperature and pressure. The deep oxidation conversion in SC -$CO_2$ media is better than that in air media at same pressure condition. This can be explained by the solubility of VOCs in $SC-CO_2$. The many intermediates produced by the partial oxidation of VOCs were detected from off-line samples. The intermediates were Identified as benzene, toluene, benzaldehyde, phenol, naphthalene, 1,1`-biphenyl, benzoic acid, 3-methylphenol, 1,1'-(1,2-ethanediyl)bis- benzene, 1,1'-(1,2-ethene- diyl)bis-benzene, anthracene, and so on. The amount of intermediates was decreased as the molar radio of oxygen to carbon dioxide was decreased. When the molar ratio of oxygen to carbon dioxide was 1 : 16, the deep conversion was kept constant. Thus, the catalytic oxidation process in $SC-CO_2$ media can be combined on-line with supercritical fluid extraction of environmental matrices and supercritical regeneration of used adsorbent. Thus, the nontoxic $SC-CO_2$ media process was suggested as the new VOCs control technology.

  • PDF

Characteristics of Transesterification Reaction of Soy Bean Oil by Acid Catalysts (산촉매에 의한 대두유의 전이에스테르화 반응 특성)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.231-238
    • /
    • 2009
  • Characteristics of the transesterification reaction between triglycerides in soy bean oil and methanol were investigated in the presence of acid catalysts. such as sulfuric acid and PTS (p-toluene sulfonic acid). Concentrations of diglyceride and monoglyceride which were intermediates in the reaction mixtures, were far below 10% of triglyceride under any reaction conditions. Thus, conversion of the reaction could be determined from the concentration of triglyceride. Dried PTS had more superior catalytic power than sulfuric acid for transesterification reaction between soy bean oil and methanol. When transesterification reaction of soy bean oil was catalyzed by 1 wt% of PTS at methanol stoichiometric mole ratio of 2 and $65^{\circ}C$, final conversion reached 95% within 48 hours. If FAME (fatty acid methyl ester) was added into reaction mixture of soy bean oil, methanol and PTS catalyst, it converted reaction mixture into homogeneous phase, and substantially increased reaction rate. When reaction mixture was freely boiling which had equal volumetric amount of FAME to soy bean oil, methanol stoichiometric mole ratio of 2 and 1 wt% of PTS, final conversion achieved value of 94% and temperature approached to $110^{\circ}C$ within 2 hours.

Synthesis and Industrial Application of Dimer Acid(1);Synthesis of Dimer Acid with Clay Catalyst (다이머산 합성 및 공업적 응용성(제1보);점토촉매하에서 다이머산의 합성)

  • Yoon, Young-Kyoon;Jeong, Noh-Hee;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.135-141
    • /
    • 1999
  • A synthesis of Dimer acid was studied from a tall oil fatty acid. Catalytic activity measured as reactant conversion in a autoclave reactor increase in accordance with the acidity. The optimization of process conditions were tested by an experimental design method. Optimization synthetic conditions of dimer acid and were reaction of tall oil fatty acid during 2 hour at $250^{\circ}C$, used of 7.3 wt% active clay and $1.2{\sim}1.4wt%$ water, and found reation pressure $8{\sim}9Kg/cm^2$. The maximum conversion rate was researched $74{\sim}76%$.

Gasoline Desulfurization by Catalytic Alkylation over Methanesulfonic Acid

  • Wu, Xiaolin;Bai, Yunpeng;Tian, Ying;Meng, Xuan;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3055-3058
    • /
    • 2013
  • Methanesulfonic acid (MSA) was used as catalyst to remove trace organic sulfur (thiophene) from Fluid Catalytic Cracking gasoline (FCC) via alkylation with olefins. The reactions were conducted in Erlenmeyer flask equipped with a water-bath under atmospheric pressure. The influence of the temperature, the reaction time, and the mass ration of MSA were investigated. After a 60 min reaction time at 343 K, the thiophene conversion of 98.7% was obtained with a mass ration of MSA to oil of 10%. The catalyst was reused without a reactivation treatment, and the thiophene conversion reached 92.9% at the third time. The method represents an environmentally benign route to desulfur, because MSA could easily be separated from the reaction mixture via decantation and it could be reused.

Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method (능금산법으로 제조된 페롭스카이트형 산화물에서 벤젠의 촉매연소반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Perovskite-type oxides were successfully prepared using malic acid method, characterized by TG/DTA, XRD, XPS, TEM and $H_2$-TPR and their catalytic activities for the combustion of benzene were determined. Almost of catalyst showed perovskite crystalline phase and 15-70 nm particle size. The $LaMnO_3$ catalysts showed the highest activity and the conversion reaches almost 100% at $350^{\circ}C$. The catalysts were modified to enhance the activity through substitution of metal into the A or B site of the perovskite oxides. In the $LaMnO_3$-type catalyst, the partial substitution of Sr into site the A-site enhanced the catalytic activity in the benzene combustion. In addition, the partial substitution of Co or Cu into site the B-site also enhanced the catalytic activity and the catalytic activity was in the order of Co > Cu > Fe in the $LaMn_{1-x}B_xO_3$ (B = Co, Fe, Cu) type catalyst.

Characteristics of Heteropoly Acid Catalyst for Emission Gas Control in Methanol Fueled Vehicles (메탄올 자동차 배기가스 정화용 헤테로폴리산 촉매의 특성)

  • 서성규;박남국;박훈수;김재승
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 1995
  • To prevent or reduce air pollutant from methanol fueled vehicles, methanol oxidation reaction was carried out using a heteropoly acid catalysts. Catalytic activities of catalysts have been experimented at atmospheric pressure in a fixed bed flow reactor. Catalysts were characterized by XRD, IR, thermal analysis, N $H_{3}$-TPD and GC pulse technique. Acidities of catalysts were highly affected by poly-atoms. Methanol conversion was much higher on catalyst with W than on catalyst with Mo as a poly-atoms. With the increase of copper content(X) in C $u_{x}$ $H_{{3-2x}}$PMo catalyst, acidity was decreased and oxidation ability was increased. Methanol conversion and product distribution were affected by the acidity and oxidation ability of catalyst. Especially, supported PdSiW(1wt%) catalyst has a very good methanol conversion and C $O_{2}$ selectivity as high as a commertial 3-way catalyst.t.

  • PDF

Decomposition of Volatile Organic Compounds Using Regenerated Metal Oxide Catalysts (폐 산업용 금속산화물계 촉매를 이용한 휘발성유기화합물의 제거)

  • Nam Seung-Won;Shim Wang-Geun;Kim Sang-Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.431-439
    • /
    • 2006
  • Catalytic oxidation of benzene, toluene and xylene (BTX) using regenerated metal oxide catalysts (ZnO-CuO, NiO, $Fe_2O_3$, ZnO, CrO) were investigated in a fixed bed flow reactor to evaluate their feasibility for the purpose of removing volatile organic compounds (VOCs). Four kinds of pre-treatment methods such as gas (air and hydrogen), acid aqueous solution, alkali aqueous solution and cleaning agent were used to find out the optimal regeneration conditions. The physico-chemical properties of the used and regenerated catalysts were characterized by BET and TPR (Temperature Programmed Reduction). The used catalysts showed high conversion ratio and the catalytic ability of toluene oxidation was in the order of ZnO-CuO>$Fe_2O_3$>NiO>ZnO>CrO. We found that the acid aqueous pre-treatment (0.1 N HNO$_3$) was the best way to enhance the catalytic activity of $Fe_2O_3$. In addition, air and hydrogen gas treatment were optimal for NiO and ZnO-CuO catalysts, respectively. Furthermore, the decomposition of BTX depends on the type of a catalyst and a gas molecule.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Evaluation of Luminescent P450 Analysis for Directed Evolution of Human CYP4A11

  • Choi, Seunghye;Han, Songhee;Lee, Hwayoun;Chun, Young-Jin;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.487-492
    • /
    • 2013
  • Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency ($k_{cat}/K_m$) for lauric acid hydroxylation mainly due to an increase in $K_m$. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in $k_{cat}$ and an increase in Km. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.