• Title/Summary/Keyword: Acid and base

Search Result 1,238, Processing Time 0.025 seconds

Relationships between arterial and urinary $P_CO_2}, P{O_2}$ and acid-base balances (동맥혈 및 뇨 $P_CO_2}, P{O_2}$ 의 산-염기 균형 및 뇨량과의 관계)

  • Kim, Yong-Jin;Lee, Yeong-Gyun
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.213-220
    • /
    • 1983
  • Pulmonary function is the determinant of blood gas tension. However, Acid-Base disturbances can also alter partial pressures of oxygen and carbon dioxide in arterial blood. During respiratory acidosis $PO_2$ will be lowered and reverse changes will be produced during respiratory alkalosis. On the other hand, in metabolic acidosis $PO_2$ will be elevated and $PCO_2$ will be lowered by the respiratory compensation, and reverse response will be induced in metabolic alkalosis. Urinary gas tension has many influencing factors than arterial blood and difficult to estimate the tendency of its alterations. Urinary $PO_2$ and $PCO_2$ are not always identical level as venous blood. It is to be altered by blood gas tension, flow rate of urine, metabolic rate of kidney, and Acid-Base status of blood. Particularly countercurrent exchange of oxygen and carbon dioxide in the renal medulla will make larger alteration of gas tension than venous blood. After induction of Acid-Base disturbances [disturbances] arterial and urinary $PCO_2$, $PO_2$, urinary volume, and osmolarity were determined in dogs, and the relationships between arterial and urinary $PCO_2$ , $PO_2$ Acid-Base disturbances, urinary volume, and osmolarity were investigated. 1. During the acute Metabolic and Respiratory disturbances urinary pH did not respond on respiratory origin. However, there were immediate urinary response in pH on metabolic origin. 2. Urinary $PO_2$, $PCO_2$, did not always follow arterial or venous gas tension and Acid-Base disturbance. Urinary $PCO_2$, correlate well with the urinary volume. The larger the urinary volume, $PCO_2$ lowered to the venous level. The smaller the urinary volume, urinary $PCO_2$ tends to be higher. However urinary $PO_2$ did not have any particular correlation with urinary volume. 3. Correlation between urinary $PCO_2$ and $PO_2$ were inversely proportional to arterial blood. Differences of $PCO_2$ between arterial blood and urine also did not have any particular correlation with urinary volume. This may suggest that changes on blood gas tensions can influence on urinary $PCO_2$. 4. There were eminent clear inverse correlation between urinary $PCO_2$ and osmolar concentrations of urine. Above results strongly suggest that partial pressure of gas in urine primarily depend upon counter-current exchanges in renal medullary tissues.

  • PDF

Cinnamic Acid Derivatives III, The Kinetics and Mechanism of the Nucleophilic Addition of Thioglycolic Acid to Benzalacetophenone Derivatives (신남산 유도체III, Benzalacetophenone 유도체에 대한 Thioglycolic acid의 친핵성 첨가반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Hwang, Yong-Hyun;Park, Eun-Kyung;Ryu, Jung-Wook;Lee, Kwang-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.33-40
    • /
    • 1990
  • The Kinetics of the addition of benzalacetophenone derivatives was investigated by ultraviolet spectrophotometery in 5% dioxane $H_2O$ at $50^{\circ}C$. A rate equation was obtained in wide range of pH. The substituent effects on benzalacetophenone derivatives were studied, and addition were facilitated by electron attracting groups. The final product was benzalacetophenone-${\beta}$-thioglycolic acid synthesized by the addition of thioglycolic acid to benzalacetophenone. On the base of the rate equation, substituent effect, general base effect and final product, the plausible addition mechanism was proposed: Below pH 9.0, only neutral thioglycolic acid molecule was added to the carbon-carbon double bond, and in the range of pH $9.0{\sim}11.0$, neutral thioglycolic acid molecule and thioglycolic acid anion competitively attacted the double bond. By contrast, above pH 11.0, the reaction was dependent upon only the addition of thioglycolic acid anion.

Cloning and Base Sequence Determination of Replication Initiation Gene (rep) Isolated from Staphylococcus aureus DH1 R-plasmid pSBK203 (Staphylococcus aureus DH1에서 분리된 R-plasmid pSBK203의 복제 개시 유전자(rep) 분리 및 염기서열 결정)

  • Park, Seung-Moon;Kwon, Dong-Hyun;Byeon, Woo-Hyeon
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.44-47
    • /
    • 1993
  • A replication initiation gene was identified and its nucleotide sequence has been determined from a 3.8 kb, chloramphenicol acethyltransferase conferring R-plasmid pSBK203 of Staphylococcus aures. Location of the replication related region of pSBK 203 was determined by interuption with pUC 119 at XBaI and MspI sites which resulted in inactivation of replication in Bacilius subtilis. Base sequence of this region revealed on open reading frame of 942 base pairs, which encoded a 314 amino acid protein. Base sequence homology with other rep of pT181 family plasmids such as pT181, pC221, pC223, pS194, pU112, and pCW7 was ranged from 78% to 97% and the predicted amino acid sequence homology was from 72% to 95%.

  • PDF

Experimental Assessment of Forest Soil Sensitivity to Acidification -Application of Prediction Models for Acid Neutralization Responses- (산림토양(山林土壤)의 산성화(酸性化) 민감도(敏感度)에 대(對)한 실험적(實驗的) 평가(評價)(I) -산중화(酸中和) 반응(反應) 예측모형(豫測模型)의 활용(活用)-)

  • Lee, Seung Woo;Park, Gwan Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.133-138
    • /
    • 2001
  • Increased base cation loss and Al mobilization, a consequence of soil acid neutralization responses, are common in air polluted areas showing forest decline. The prediction models of acid neutralization responses were developed by using indicators of soil acidification level(pH, and base saturation) in order to assess the forest soil sensitivity to acidification. The soil acidification level was greatest in Namsan followed by Kanghwa, Ulsan, and Hongcheon, being contrary to regional total $ANC_H$ pattern through soil columns leached with additional acid ($16.7mmol_c\;H^+/kg$), Both base exchange and Al dissolution were main acid neutralization processes in all study regions. There were low base exchange and high Al dissolution in the regions of the low total $ANC_H$. The $ANC_M$ by sulfate adsorption was greatest in Hongcheon compared with other regions even though the AN rate was very low as 6.4%. Coefficients of adjusted determination of simple and multiple regression models between soil acidification level indicators and the acid neutralization responses were more than 0.52(p<0.04) and 0.89(p<0.01), respectively. The result suggests that soil pH and base saturation are available indicators for predicting the acid neutralization responses. These prediction models could be used as an useful method to measure forest soil sensitivity to acidification.

  • PDF

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Road Cut Slopes (건설현장 절취사면의 산성배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.491-498
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur minerals pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this study the generation characteristics and the prediction of ARD of various road cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Sixteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

  • PDF

Spectrophotometric Determination of Acidic Strength of Some Acids in Acetic Acid Medium (분광광도법에 의한 아세트산에서의 몇가지 산의 세기 측정에 관한 연구)

  • Ki-Won Cha;Sung-Wook Hong;Chang-Suk Yang;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.452-456
    • /
    • 1987
  • Acidic strength of benzenesulfonic acid (HBs) and it's derivatives, p-toluenesulfonic acid(HTs), p-chlorobenzenesulfonic acid(HCs) and m-nitrobenzenesulfonic acid(HNs), were measured in the anhydrous acetic acid medium by spectrophotometry. p-naphtholbenzein (PNB) was used as an indicator base and the ionization constants of HTs, HBs, HCs and HNs were $3.5{\times}10^2,\;4.1{\times}10^2,\;19.3{\times}10^2\;and\;50{\times}10^2$, respectively, at 20.0${\pm}$0.1$^{\circ}$C.

  • PDF

The Effect of Antibiotics on the DNA Synthesis and Base Composition in Fungal Cells (진균류의 DNA 생합성 및 염기조성에 미치는 항생물질의 효과)

  • Park, Kyou-Yeon;Lee, Chong-Sam
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.366-377
    • /
    • 1994
  • The base composition of DNA of Aspergillus phoenicis, Rhizopus acidus and Candida albicans treated with cycloheximide and nalidixic acid during the culture was analyzed to compare with the control. The contents of base in the DNA were inhibited by cycloheximide, 20.4% of adenine, 43.1% of thymine, 40.9% of cytosine, 35.3% of guanine, 32.2% of purine, and 42.7% of pyrimidine for A. phoenicis. In R. acidus, 34.2% of adenine, 42.1% of thymine, 38.0% of cytosine, 18.1% of guanine, 24.1% of purine and 40.0% of pyrimidine were depressed by cycloheximide. In the antibiotic treatment of C. albicans, 58.3% of adenine, 58.5% of thymine, 58.1% of cytosine, 42.4% of guanine, 46.8% of purine and 58.8% of pyrimidine were inhibited to compare with the control. The nalidixic acid treatments were showed that, in A. phoenicis 41.6% of adenine, 47.1% of thymine, 59.3% of cytosine, 46.3% of guanine, 45.6% of purine and 57.2% of pyrimidine were inhibited. When R. acidus was treated with nalidixic acid, 59.1% of adenine, 54.7% of thymine, 35.3% of cytosine, 37.4% of guanine, 45.9% of purine and 44.9% of pyrimidine decreased. In treatment of nalidixic acid, the content of DNA was depressed 60.1% of adenine, 68.6% of thymine, 60.7% of cytosine, 40.0% of guanine, 45.8% of purine and 63.5% of pyrimidine for C. albicans In the DNA synthesis of three fungal cells, cycloheximide and nalidixic acid treatments were analyzed obviously that the biosynthesis of pyrimidine was depressed than that of purine. Therefore, it was showed that the DNA contents in the various fungal cells were inhibited remarkably in nalidixic acid treatment than cycloheximide.

  • PDF

A Study on Corrosion Failure of a Weathering Steel Weldment with Various Applied Potentials in Acid-chloride Solution (산-염소이온 분위기의 인자전위에 따른 내후성강 용접부의 부식파괴에 관한 연구)

  • 최윤석;김정구;김종집;이병훈
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.97-105
    • /
    • 2000
  • The stress corrosion cracking(SCC) and hydrogen embrittlement cracking(HEC) characteristics of a weathering steel weldment were investigated in aerated acid-chloride solution. The electrochemical properties of weldment were investigated by polarization test and galvanic corrosion test. Weathering steel did not show passive behavior in the acid-chloride solution. Galvanic corrosion between the weld metal and the base metal was not observed because the base metal was anodic to the weld metal. The slow-strain-rate tests(SSRT0 were conducted at a constant strain rate o 7.87×{TEX}$10^{-7}${/TEX}/s at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials. The weldment of weathering steel was susceptible to both anodic dissolution SCC and hydrogen evolution HEC.

  • PDF

Acid and Base Properties of Chemical-Treated Natural Zeolite

  • Lee, Jae-Young;Shim, Mi-Ja;Kim, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.620-624
    • /
    • 1995
  • To study the acid and base properties of chemical-treated natural zeolite, FT-IR analysis was performed by the adsorption of pyridne and pyrrole and thermo-gravimetric analysis was done by the adsorption of NH$_{3}$. These solid catalysts have two acid sites, which are related to the Bronsted and Lewis acid sites, respectively. HIC-treatment led to the increased acidity and the maintained basicity.Acidity of NaHO-treatment samples also increased with thr NaOH-treatment but basicity decreased. The p-xylene selectivity on the chemical-treatment zelite was higher than that on the untreated zeolite.

  • PDF