• Title/Summary/Keyword: Acid and base

Search Result 1,241, Processing Time 0.03 seconds

Comparison of Surface Characteristics and Adsorption Rate of Benzene Vapor According to Modifications of Activated Carbon (개질에 따른 활성탄의 표면특성과 Benzene 증기의 흡착속도 비교)

  • Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.919-924
    • /
    • 2008
  • The surface properties and adsorption rates of activated carbon modified with acid and base were compared. The distribution ratio of C and C-H on the surface of activated carbon were decreased by modification with acid and base, but the distribution ratio of C-O, C=O, and O=C-O were increased. Base modification damaged the surface of activated carbon more than acid modification, it caused the effect of 6 percent increments of surface area. Adsorption rate model was more suitable to second order equation than first order equation. Adsorption rate was controlled by adsorption in pore better than in surface.

The Taste Compounds of Sun Dried Ascidian, Cynthia roretzi (건조(乾燥)멍게의 정미성분(呈味成分))

  • Sung, Nak-Ju;Lee, Jong-Ho;Chung, Seung-Yong
    • Journal of Nutrition and Health
    • /
    • v.11 no.3
    • /
    • pp.13-20
    • /
    • 1978
  • Changes of free amino acids, nucleotides and their related compounds as taste compounds during sun drying of ascidian Cynthia roretzi, were analyzed by amino acid autoanalyzer and high speed liquid chromatography. In fresh ascidian, the results showed that 5'-UMP $(12.1\;{\mu}mole/g)$ was dominant and the content of cytosine, 2', 3'-CMP, 2', 3'-GMP, hypoxanhtine, 5'-AMP,5'-IMP were 5.8, 3.4, 3.1, 2,3, 1.7 and $1.3\;{\mu}mole/g$ ondry base respectively. 5'-IMP, 2', 3'-CMP and 2', 3'-GMP tended to degrade slowly and 5'-AMP, cytosine and 5'-UMP were decreased rapidly while hypoxanthine were increased remarkably during the sun drying. In dried ascidian, the content of hypoxanthine was the highest, 7.2 mole/g on dry base, whereas that of 5'-AMP $(0.5\;{\mu}mole/g)$) and 5'-IMP $(0.9\;{\mu}mole/g)$ were lower. Glutamic acid, alanine and serine were dominant amino acid in the fresh extracts, having 22.4% (611.3mg%, on dry qase), 19.8% (540.5mg%) and 14.8% (402.8mg%) of the total amino acid content respectively. The content of tyrosine, histidine, lysine, methionine, isoleucine and valine were low, and proline, phenylalanine were detected in trace amount. The free amino acid were not changed in composition but the increase of total free amino acid was approximately 116.8mg% during sun drying. In sun dried ascidian, glutamic acid (691.0mg, on dry base), alanine (641.3mg%), serine (469.5mg%), threonine (234.8mg%) and glycine (206.3mg%) were dominant amino acid. It is believed that glutamic acid, serine, alanine, threonine, glycine and hypoxanthine play an important role as taste compounds in sun dried ascidian.

  • PDF

Acid-base Balance and Metabolic Acidosis in Neonates (신생아의 산-염기 균형과 대사성 산증)

  • Lee, Byong-Sop
    • Neonatal Medicine
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2010
  • Metabolic acidosis is commonly encountered issues in the management of critically ill neonates and especially of preterm infants during early neonatal days. In extremely premature infants, low glomerular filtration rate and immaturity of renal tubules to produce new bicarbonate causes renal bicarbonate loss. Higher intake of amino acids, relatively greater contribution of protein to the energy metabolism and mineralization process in growing bones are also responsible for higher acid load in premature infant than in adult. Despite widespread use of sodium bicarbonate in the management of severe metabolic acidosis, use of sodium bicarbonate in premature infants should be restricted to a reasonable but unproven exception such as ongoing renal loss. Despite concern about the low pH value (<7.2) which can compromise cellular metabolic function, no treatment guideline has been established regarding the management of metabolic acidosis in premature infants. Appropriately powered randomized controlled trials of base therapy to treat metabolic acidosis in critically ill newborn infants are demanding.

Modeling of Acid/Base Buffer Capacity of soils (토양의 산/염기 완충능의 모델링)

  • 김건하
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Acid/Base buffer capacity of soil is very important in prediction of contaminant transport for its direct impact on pH change of the system composed of soil-contaminant-water, In this research, diffuse double layer theory as well as two layer electrostatic adsorption model are applied to develop a theoretical model of buffer capacity of soil. Model application procedures are presented as well. Buffer capacity of Georgia kaolinite and Milwhite kaolinite was measured by acid-base titration. Model prediction and experimental results are compared.

  • PDF

임기광산 폐석 및 퇴적물의 산성배수발생 능력 평가

  • 정영욱;임길재;지상우;민정식;최용석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.390-393
    • /
    • 2004
  • This study was carried out to evaluate the acid producing potential of geological materials such as pit wall, waste rock and stream sediments near the abandoned Imgi mine. The 17 samples used in this study were collected and then treated by static test such as Acid Base Accounting and etc. Samples of pit wall and waste rocks with high S content display a NAGpH values below 4.5 and net acid potential. Therefore some cost effective measures such as capping and groudwater flow barriers, will be required to reduce the impacts of ARD from the waste rock impoundment and the pit wall on near the stream.

  • PDF

Proteomic Evaluation of Cellular Responses of Saccharomyces cerevisiae to Formic Acid Stress

  • Lee, Sung-Eun;Park, Byeoung-Soo;Yoon, Jeong-Jun
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.302-309
    • /
    • 2010
  • Formic acid is a representative carboxylic acid that inhibits bacterial cell growth, and thus it is generally considered to constitute an obstacle to the reuse of renewable biomass. In this study, Saccharomyces cerevisiae was used to elucidate changes in protein levels in response to formic acid. Fifty-seven differentially expressed proteins in response to formic acid toxicity in S. cerevisiae were identified by 1D-PAGE and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analyses. Among the 28 proteins increased in expression, four were involved in the MAP kinase signal transduction pathway and one in the oxidative stress-induced pathway. A dramatic increase was observed in the number of ion transporters related to maintenance of acid-base balance. Regarding the 29 proteins decreased in expression, they were found to participate in transcription during cell division. Heat shock protein 70, glutathione reductase, and cytochrome c oxidase were measured by LC-MS/MS analysis. Taken together, the inhibitory action of formic acid on S. cerevisiae cells might disrupt the acidbase balance across the cell membrane and generate oxidative stress, leading to repressed cell division and death. S. cerevisiae also induced expression of ion transporters, which may be required to maintain the acid-base balance when yeast cells are exposed to high concentrations of formic acid in growth medium.

Studies on the Deodorization in the Nightsoil Treatment Plant with liquid Phase Catalytic Oxidation Method by Utilization of Fe-EDTA (Fe-EDTA계 액상촉매 산화법에 의한 분뇨처리장 악취제거에 관한 연구)

  • 이인화
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.105.1-113
    • /
    • 1992
  • The present study was performed to develop the removal system of the offensive gases, including hydrogen sulfide of acid gas, ammonia or amice of base gas, from the nightsoil treatment plant. In order to remove the offensive gases, the Fe-EDTA system liquid phase catalytic oxidation method with the bubble lift column reactor was employed. From the results obtained, it was confirmed that the offensive gases can be deodorized simultaneously and also hydrogen sulfide of acid gas, ammonia of base gas completely removed at pH 6.45. In addition, as input gases feed rate the efficiency of acid gas did not change but the efficiency of base gases decreased to approximately 90 % at pH 6, 0. From the result of particle size analyzer, it was found that the particle sizes including sulfur and other impurites grew up to $21{\mu}m$ over 72hour reaction time.

  • PDF

Acid and Base Catalyzed Intramolecular Cyclizations of N-Benzoylthiocarbamoyl-acetals

  • Lee, Bong-Yong;Kim, Choong-Sup;Lee, Jong-Wook
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.99-103
    • /
    • 2000
  • Acid and base catalyzed intramolecular cyclizations of N-benzoylthioureidoacetal, contain-ing four functional groups adjacent to thiourea such as benzocarbamoyl, acetal, thioure and amide, were investigated. The condensation reaction of N-benzoyl thiocarbamoylgly-cine amide in the presence of 10% aqueous NaOH provided 1-(2,2-dimethoxy)ethyl-imi- dazolidine-2-thione exclusively. In the presence of pyridine, it was transformed to 2- thiohydantoin. N-Benzoyl thiocarbamoyl glycine amide was completely transformed to an iminothiazolidine exclusively in the presence of Lewis acid such as borontrifluoride ether-ate or trimethylsilyl iodide. 1-(2,2-Dimethoxy)ethyl-imidazolidine-2-thione was transformed to imidazole[2,1-b]thiazole and pyrazino[5,1-a]imidazole in the presence of $BF_3$.$ET_2$O and formic acid, respectively.

  • PDF

Preparation of Yogurt from Milk Added with Purple Sweet Potato (자색고구마 첨가 요구르트의 제조 및 특성)

  • 전승호;이상욱;신용서;이갑성;류일환
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2000
  • New type yogurt base were prepared from milk added with skim milk powder or purple sweet potato, and fermented by lactic acid bacteria (Streptococcus thermophilus and Bifidobacterium infantis, 1:1, v/v). The yogurt proudcts were evaluated for acid production(pH, titratiable acidity), number of viable cell, viscosity, sensory properties, and color value. The composition of some organic acids was also analyzed by GC. The acid production slightly decrerased by addition with purple sweet potato. There was no significant difference in viable cell counts between control (yogurt added with only skim milk powder) and yogurt added with purple sweet potato, and viable cell counts of all samples were above 9.08 log cfu/ml. Viscosity of yogurt added with purple sweet potato(36,800∼46,000 centipoise) was higher than that of yogurt added with only skim milk powder(32,200 centipoise). The overall sensory score of yogurt added with purple sweet potato(38.6%, dry base) was the best of tested yogurt. The major organic acid of yogurt added with purple sweet potato was lactic acid. its content was 0.997∼1.203%. malic acid, succinic acid, oxalic acid, and fumaric acid were analyzed out a little. Lightness and yellowness decreased by addition with purple sweet potato but redness increased. Total color difference($\Delta$E) with yogurt addition with purple sweet potato and only skim milk powder were very high(above 11.46).

  • PDF

Acid/base alterations during major abdominal surgery: 6% hydroxyethyl starch infusion versus 5% albumin

  • Kwak, Hyun Jeong;Lim, Oh Kyung;Baik, Jae Myung;Jo, Youn Yi
    • Korean Journal of Anesthesiology
    • /
    • v.71 no.6
    • /
    • pp.459-466
    • /
    • 2018
  • Background: To compare the effects of intraoperative infusions of balanced electrolyte solution (BES)-based hydroxyethyl starch (HES) and saline-based albumin on metabolic acidosis and acid/base changes during major abdominal surgery conducted using Stewart's approach. Methods: Forty patients, aged 20-65 years, undergoing major abdominal surgery, were randomly assigned to the HES group (n = 20; received 500 ml of BES-based 6% HES 130/0.4) or the albumin group (n = 20; received 500 ml of normal saline-based 5% albumin). Acid-base parameters were measured and calculated using results obtained from arterial blood samples taken after anesthesia induction (T1), 2 hours after surgery commencement (T2), immediately after surgery (T3), and 1 hour after arriving at a postanesthetic care unit (T4). Results: Arterial pH in the HES group was significantly higher than that in the albumin group at T3 ($7.40{\pm}0.04$ vs. $7.38{\pm}0.04$, P = 0.043), and pH values exhibited significant intergroup difference over time (P = 0.002). Arterial pH was significantly lower at T3 and T4 in the HES group and at T2, T3, and T4 in the albumin group than at T1. Apparent strong ion difference (SIDa) was significantly lower at T2, T3, and T4 than at T1 in both groups. Total plasma weak nonvolatile acid ($A_{TOT}$) was significantly lower in the HES group than in the albumin group at T2, T3 and T4 and exhibited a significant intergroup difference over time (P < 0.001). Conclusions: BES-based 6% HES infusion was associated with lower arterial pH values at the end of surgery than saline-based 5% albumin infusion, but neither colloid caused clinically significant metabolic acidosis (defined as an arterial pH < 7.35).