• Title/Summary/Keyword: Acid Soil

Search Result 1,938, Processing Time 0.029 seconds

Chemistry of Strong Acidic Soil on Ulsan-Jungjadong Cut-Slope Affecting Seed Germination (종자발아에 영향을 미치는 울산 정자동 절토비탈면 강산성 토양의 화학적 특성)

  • Jang, Chang-Hee;Kim, Min-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • Occasionlly, a lot of plants withered on the marine upheaval soil, because of the potential acid sulfate soil. It was necessary to investigate the chemistry of soil, before planting on Ulsan-Jungjadong cut-slope of road construction site. Cut-slope surface soils were sampled on the every varying points in soil colour and analyzed chemically. Germination status of seeds in sample soils was investigated such as Albizzia julibrissin, Festuca arundinacea. Relationship between germination status and chemistry of soil was analyzed. The results of investigation and analysis are as follows. 1. Germination of seeds was inhibited, less than pH($H_2O$ 1 : 5) 2.63. 2. Germination of seeds was inhibited, more than EC($H_2O_2$ 1 : 5) 13.4mS. 3. Germination of seeds was inhibited, more than aluminum ion content 2.0ppm in soil solution extracted by A$H_2O$ and 6.2ppm by $H_2O_2$. 4. pH($H_2O$ 1 : 5), EC($H_2O_2$ 1 : 5) and aluminum ion content proved chemical indicators of seed germination inhibition, in case of potential acid sulfate soil.

Cation Leaching from Soils Percolated with Simulated Sulfuric Acid Rainn (人工酸性 빗물에 의한 여러 土壤으로부터의 이온 洗脫)

  • Rhyu, Tae-Cheol;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.16 no.2
    • /
    • pp.169-180
    • /
    • 1993
  • Soils of four combinations, sand with high content of organic matter(SL), sand with low content of OM(SS), siltyl loam with high content of OM(LL) and silty loam with low content OM (LS), were filled on column and then percolated with simulated sulfuric acid rain with pH 5.6, 4.0, 3.5, 3.0 and 2.5. From soil leachates, pH and concentrations of basic cations and Al were determined. Cation concentrations in the leachates increased as pH of the rain decreased. The orders of buffering capacity of soil, leachability of cation from soil, leaching sensitivity of ion andbase saturation sensitivity of soil to acidity of the rain water were SS$\leq$K <$\leq$LL

  • PDF

Desorption of Heavy Petroleum Oils and Heavy Metals from Soils by Flushing Agents (세정제에 의한 복합오염토양으로부터의 중질유 및 중금속 탈착 특성)

  • Yun, Sung Mi;Kim, Gil Ran;Lim, Hee Jun;Kim, Han S.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.94-103
    • /
    • 2014
  • In this study washing efficiency and desorption isotherms for heavy petroleum oil (HPO), Zn, and Pb bound to complex contaminated soils were examined using various soil flushing agents. Sodium dodecyl sulfate (SDS), methanol, ethylene diamine tetraacetic acid (EDTA), and citric acid were selected as soil flushing agents. 3% (w/v) and 4% SDS showed the highest removal efficiency for HPO, but the difference was not statistically significant (p > 0.05). Thus, 3% SDS was chosen as the best soil flushing agent for HPO. In the case of heavy metals, 0.1-M EDTA showed the highest removal efficiencies. But 0.05-M citric acid was selected due to its economic and eco-friendly strengths. The desorption isotherms obtained using Freundlich and Langmuir models indicated that the maximum desorption characteristics ($K_F$ and $Q_{max}$) of HPO with 4% SDS and 90% methanol and heavy metals with 0.1-M EDTA and 0.1-M citric acid, respectively, were markedly lower than in other cases. In addition, when 4% SDS and 90% methanol were used for HPO in the range of $C_e$ higher than 600 mg/L, and when 0.1M citric acid and 0.1M EDTA were used for Zn and Pb in the range of $C_e$ higher than 300 and 100 mg/L, respectively, the distribution constant converged to certain levels. Thus, constant values of $K_U$ and $K_L$ were determined. It was found that these constants represent the maximum desorption capacity and they can be used as distribution coefficients of desorption equilibrium for the flushing agents. The results of this study provided fundamental information for the selection of the best agents as well as for the process design and operation of soil washing/soil flushing of complex contaminated soils.

Determination of Cyhalofop-butyl and its Metabolite in Water and Soil by Liquid Chromatography (LC를 이용한 물과 토양 중 Cyhalofop-butyl과 대사물질의 분석)

  • Hem, Lina;Choi, Jeong-Heui;Liu, Xue;Khay, Sathya;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • In this study, a simple, effective, and sensitive method has been developed for the quantitative residue analysis of cyhalofop-butyl and its metabolite cyhalofop acid in water and soil when kept under laboratory conditions. The content of cyholofop-butyl and cyhalofop acid in water and soil was analyzed by first purifying the compounds through liquid-liquid extraction and partitioning followed by Silica gel (adsorption) chromatography. Upon the completion of the purification step the residual levels were monitored through high-performance liquid chromatography (HPLC) using a UV absorbance detector. The recoveries of cyhalofop-butyl from three replicates spiked at two different concentrations ranged from 82.5 to 100.0% and from 66.7 to 97.9% in water and soil, respectively. The limit of detection and minimum detection level of cyhalofop-butyl in water and soil was 0.02 ppm and 10 ng, respectively. The recoveries of cyhalofop acid ranged from 80.7 to 104.8% in water and from 76.9 to 98.1 % in soil. The limit of detection of cyhalofop acid was 0.005 ppm in water and 0.01 ppm in soil, while the minimum detection level was 2 ng both in water and soil. The half-live of cyhalofop-butyl was 4.14 and 6.6 days in water and soil, respectively. The method was successfully applied to evaluate cyhalofop-butyl residues in water and soil applied aj. 30% emulsion, oil in water (EW) product.

Experimental Assessment of Forest Soil Sensitivity to Acidification -Application of Prediction Models for Acid Neutralization Responses- (산림토양(山林土壤)의 산성화(酸性化) 민감도(敏感度)에 대(對)한 실험적(實驗的) 평가(評價)(I) -산중화(酸中和) 반응(反應) 예측모형(豫測模型)의 활용(活用)-)

  • Lee, Seung Woo;Park, Gwan Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.133-138
    • /
    • 2001
  • Increased base cation loss and Al mobilization, a consequence of soil acid neutralization responses, are common in air polluted areas showing forest decline. The prediction models of acid neutralization responses were developed by using indicators of soil acidification level(pH, and base saturation) in order to assess the forest soil sensitivity to acidification. The soil acidification level was greatest in Namsan followed by Kanghwa, Ulsan, and Hongcheon, being contrary to regional total $ANC_H$ pattern through soil columns leached with additional acid ($16.7mmol_c\;H^+/kg$), Both base exchange and Al dissolution were main acid neutralization processes in all study regions. There were low base exchange and high Al dissolution in the regions of the low total $ANC_H$. The $ANC_M$ by sulfate adsorption was greatest in Hongcheon compared with other regions even though the AN rate was very low as 6.4%. Coefficients of adjusted determination of simple and multiple regression models between soil acidification level indicators and the acid neutralization responses were more than 0.52(p<0.04) and 0.89(p<0.01), respectively. The result suggests that soil pH and base saturation are available indicators for predicting the acid neutralization responses. These prediction models could be used as an useful method to measure forest soil sensitivity to acidification.

  • PDF

Remediation of Pb-Contaminated Soil by Soil Washing using Hdrochloric Acid (염산을 사용한 납 오염 토양의 토양 세척에 의한 정화)

  • Baek, Ki-Tae;Kim, Do-Hyung;Seo, Chang-Il;Yang, Jung-Seok;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.17-22
    • /
    • 2007
  • The feasibility of soil washing was investigated to remediate Pb-contaminated field soil. Hydrochloric acid was used as a washing agent. As mixing time increased from 5 min to 120 min, removal efficiency of Pb from contaminated soil increased from 69.3% to 81.9%. Two times washing with 0.2 M HCl showed 96% removal efficiency even at mixing time of 10 min. The Pb content in soil increased sharply as particle size of soil decreased, and removal efficiency was highly dependent on mixing time and temperature. Based on this result, acid washing technologies can be applied to remediate the Pb-contaminated soil used in this study.

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

Modeling of Acid/Base Buffer Capacity of soils (토양의 산/염기 완충능의 모델링)

  • 김건하
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Acid/Base buffer capacity of soil is very important in prediction of contaminant transport for its direct impact on pH change of the system composed of soil-contaminant-water, In this research, diffuse double layer theory as well as two layer electrostatic adsorption model are applied to develop a theoretical model of buffer capacity of soil. Model application procedures are presented as well. Buffer capacity of Georgia kaolinite and Milwhite kaolinite was measured by acid-base titration. Model prediction and experimental results are compared.

  • PDF

Feasibility study on soil washing to treat heavy metals-contaminated railway soil (중금속 오염 철도 토양의 세척에 의한 정화 타당성 연구)

  • Baek, Ki-Tae;Shin, Min-Chul;Hyun, Chung-Ho;Lee, Jae-Young;Kang, Hae-Sook
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1236-1241
    • /
    • 2007
  • The feasibility of soil washing was investigated in the laboratory to treat heavy metals-contaminated railway soil. Various organic acids including ethylene diamine tetraacetic acid (EDTA) and citric acid as well as inorganic acids such as hydrochloric acid (HCl) and phosphoric acid were tested to evaluate washing efficiency. Generally, inorganic acid showed higher removal efficiency compared to organic acids. Specially, EDTA, which are well known as most effective washing agent to remove heavy metals from soil, was not efficient to remove heavy metals in this study. Among washing agents tested in this study, HCl was most effective. The removal of Cd, Cu, and Pb was high, however, that for Zn and Ni was less than 30% with 0.5 M HCl. This difference comes from analytical methods (Korean Standard Test Method for Soil). Aqua regia was used to extract Zn and Ni, however 0.1 N HCl was used for other metals. As a result, simple washing technology is not effective, to treat railway contaminated soil with heavy metals.

  • PDF

다종 중금속으로 오염된 사질토에 대한 EK Flushing 기술 적용

  • 김병일;한상재;이군택;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.310-313
    • /
    • 2003
  • The precipitation of heavy metals within the region of pH jump is inevitable in the conventional electrokinetic remediation technology. This study prevents the interest species from precipitating through the injection of flushing solutions in which HCl, acetic acid, citric acid, EDTA and SDS dissolved. The cumulative flow resulted from electroosmosis appear in order of Citric acid

  • PDF