• Title/Summary/Keyword: Acid Leaching

Search Result 398, Processing Time 0.037 seconds

Stabilization of Two Mine Drainage Treated Sludges for the As and Heavy Metal Contaminated Soils (오염토양 특성별 광산배수처리슬러지의 비소 및 중금속 안정화)

  • Tak, Hyunji;Jeon, Soyoung;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.10-21
    • /
    • 2022
  • In the South Korea, 47% of abandoned mines are suffering from the mining hazards such as the mine drainage (MD), the mine tailings and the waste rocks. Among them the mine drainage which has a low pH and the high concentration of heavy metals can directly contaminate rivers or soil and cause serious damages to human health. The natural/artificial treatment facilities by using neutralizers and coagulants for the mine drainage have been operated in domestic and most of heavy metals in mind drainage are precipitated and removed in the form of metal hydroxide, alumino-silicate or carbonate, generating a large amount of mine drainage treated sludge ('MDS' hereafter) by-product. The MDS has a large surface area and many functional groups, showing high efficiency on the fixation of heavy metals. The purpose of this study is to develop a ingenious heavy metal stabilizer that can effectively stabilize arsenic (As) and heavy metals in soil by recycling the MDS (two types of MDS: the acid mine drainage treated sludge (MMDS) and the coal mine drainage treated sludge (CMDS)). Various analyses, toxicity evaluations, and leaching reduction batch experiments were performed to identify the characteristics of MDS as the stabilizer for soils contaminated with As and heavy metals. As a result of batch experiments, the Pb stabilization efficiency of both of MDSs for soil A was higher than 90% and their Zn stabilization efficiencies were higher than 70%. In the case of soil B and C, which were contaminated with As, their As stabilization efficiencies were higher than 80%. Experimental results suggested that both of MDSs could be successfully applied for the As and heavy metal contaminated soil as the soil stabilizer, because of their low unit price and high stabilization efficiency for As and hevry metals.

Rubidium Market Trends, Recovery Technologies, and the Relevant Future Countermeasures (루비듐 시장 및 회수 동향에 따른 향후 관련 대응방안)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.3-8
    • /
    • 2023
  • This study discussed production, demand, and future prospects of rubidium, which is an alkali group metal that is highly reactive to various media and requires carefulness in handling, but no significant environmental hazard of rubidium has been reported yet. Rubidium is used in various fields such as optoelectronic equipment, biomedical, and chemical industries. Because of difficulty in production as well as limited demand, the transaction price of rubidium is relatively high, but its detail information such as market status and potential growth is uncertain. However, if the mass production of versatile ultra-high-performance equipment such as quantum computers and the necessity of rubidium use in the equipment are confirmed, there is a possibility that the rubidium market will expand in the future. Rubidium is often found together with lithium, beryllium, and cesium, and may be present in granite containing minerals such as lepidolite and pollucite, as well as in seawater and industrial waste. Several technologies such as acid leaching, roasting, solvent extraction, and adsorption are used to recover rubidium. The maximum recovery efficiency of the rubidium from the sources and the processing above is generally high, but, in many practices, rubidium is not the main recovery target, and therefore the actual recovery effects should depend on presence of other valuable components or impurities, together with recovery costs, energy consumption, environmental issues, etc. In conclusion, although the current production and consumption of rubidium are limited, with consideration of the possible market fluctuations according to the emergence of large-scale demand sources, etc., further investigations by related institutions should be necessary.

A Synthesis of LiCoO2 using the CoSO4 Recovered from Cathode Material Scrap and its Electrochemical Properties (폐 리튬 이차전지로부터 회수된 황산코발트 제조 및 이를 이용해 합성된 산화리튬코발트 양극활물질의 전기화학적 특성)

  • Kim, Mi-So;Ha, Jong-Keun;Park, Se-Bin;Ahn, Jou-Hyeon;Choi, Im-Sic;Cho, Kwon-Koo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • The electrochemical properties using the cells assembled with the synthesized $LiCoO_2$(LCO) were evaluated in this study. The LCO was synthesized from high-purity cobalt sulfate($CoSO_4$) which is recovered from the cathode scrap in the wastes lithium ion secondary battery(LIB). The leaching process for dissolving the metallic elements from the LCO scrap was controlled by the quantities of the sulfuric acid and hydrogen peroxide. The metal precipitation to remove the impurities was controlled by the pH value using the caustic soda. And also, D2EHPA and $CYANEX^{(R)}272$ were used in the solvent extraction process in order to remove the impurities again. The high-purity $CoSO_4$ solution was recovered by the processes mentioned above. We made the 6 wt.% $CoSO_4$ solution mixed with distilled water. And the 6 wt.% $CoSO_4$ solution was mixed with oxalic acid by the stirring method and dried in oven. $LiCoO_2$ as a cathode material for LIB was formed by the calcination after the drying and synthesis with the $Li_2CO_3$ powder. We assembled the cells using the $LiCoO_2$ powders and evaluated the electrochemical properties. And then, we confirmed possibility of the recyclability about the cathode materials for LIBs.

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

Taxonomical Classification and Genesis of Anryong Series Distributed on Mountain Foot Slope (산록경사지 토양인 안룡통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won;Jang, Byoung-Choon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • This study was conducted to reclassify Anryong series based on the second edition of Soil Taxonomy and to discuss the formation of Anryong series distributed on the mountain foot slope. Morphological properties of typifying pedon of Anryong series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon of Anryong series has brown (7.5YR 4/4) loam Ap horizon (0-22 cm), strong brown (7.5YR 4/6) cobbly clay loam BAt horizon (22-35 cm), strong brown (7.5YR 4/6) cobbly clay loam Bt1 horizon (35-55 cm), reddish brown (5YR 5/4) cobbly clay loam Bt2 horizon (55-82 cm), and brown (7.5YR 5/4) cobbly clay loam Bt3 horizon (82-120 cm). The typifying pedon has an argillic horizon from a depth of 22 to 120 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. It can be classified as Ultisol, not as Alfisol. It has udic soil moisture regime, and can be classified as Udult. Also that meets the requirements of Typic Hapludults. It has 18-35% clay at the particle-size control section, and have mesic soil temperature regime. Therefore Anryong series can be classified as fine loamy, mesic family of Typic Hapludults, not as fine loamy, mesic family of Ultic Hapludalfs. Anryong series occur on mountain foot slope positions in colluvial materials derived from acid and intermediate crystalline rocks. They are developed as Ultisols with clay mineral weathering, translocation of clays to accumulate in an argillic horizon, and leaching of base-forming cations from the profile for relatively long periods under humid and temperate climates in Korea.

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

Deposition of Atmospheric Pollutants in Forest Ecosystems and Changes in Soil Chemical Properties (대기오염물질(大氣汚染物質)의 산림생태계내(山林生態系內) 유입(流入)과 토양(土壤)의 화학적(化學的) 특성(特性) 변화(變化))

  • Kim, Dong Yeob;Ryu, Jung Hwan;Chae, Ji Seok;Cha, Soon Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.84-95
    • /
    • 1996
  • Environmental pollution has recently been progressed in the metropolitan and industrial areas of Korea and concerns have been evolved against the chronic effects of the pollution on natural ecosystem. This study was carried out to investigate the environmental pollution impacts on ion input into forest ecosystems and soil environmental changes. Study plots were established at Seoul, Ulsan, Yeochon, and Seosan for pollution sites and at Pyungchang for a non-pollution site. Atmospheric deposition was measured with rain, throughfall, and stem flow samples collected in the forest areas. Soil chemical properties were investigated to compare the pollution impacts on the sites. Precipitation acidity in the metropolitan and industrial areas ranged from pH 4.5 to 5.5, showing the levels lower than pH 5.8 of mountain area. Ion concentrations in the precipitation had increased significantly while passing the crown layer in the metropolitan and industrial areas, showing the increase by 4 times at the maximum. Total ion input in the metropolitan and industrial areas was greater than that in mountain area by approximately 2-3 times. Soil acidification caused by acidic ion input seemed to be greatest at Seoul, showing pH 1 decrease compared to that of Pyungchang. Soil canon contents were relatively high in the metropolitan and industrial areas. Although the canon leaching loss was not apparent, soil acidification process seemed to be continued by acidic ion input. Environmental pollution in the metropolitan and industrial areas exerted changes in ion input into the forest ecosystems and soil conditions. The chronic effects of environmental pollution should be monitored and investigated further to explain the processes of ecosystem change and the impacts on plant growth.

  • PDF