• 제목/요약/키워드: Acid Catalyst

검색결과 872건 처리시간 0.027초

Hydrogen-bonded clusters in transformed Lewis acid to new Brønsted acid over WOx/SiO2 catalyst

  • Boonpai, Sirawat;Wannakao, Sippakorn;Panpranot, Joongjai;Praserthdam, Supareak;Chirawatkul, Prae;Praserthdam, Piyasan
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.291-300
    • /
    • 2022
  • The behavior of hydrogen species on the surface of the catalyst during the Lewis acid transformation to form Brønsted acid sites over the spherical silica-supported WOx catalyst was investigated. To understand the structure-activity relationship of Lewis acid transformation and hydrogen bonding interactions, we explore the potential of using the in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) with adsorbed ammonia and hydrogen exposure. From the results of in situ DRIFTS measurements, Lewis acid sites on surface catalysts were transformed into new Brønsted acid sites upon hydrogen exposure. The adsorbed NH3 on Lewis acid sites migrated to Brønsted acid sites forming NH4+. The results show that the dissociated H atoms present on the catalyst surface formed new Si-OH hydroxyl species - the new Brønsted acid site. Besides, the isolated Si-O-W species is the key towards H-bond and Si-OH formation. Additionally, the H atoms adsorbed surrounding the Si-O-W species of mono-oxo O=WO4 and di-oxo (O=)2WO2 species, where the Si-O-W species are the main species presented on the Inc-SSP catalysts than that of the IWI-SSP catalysts.

Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure

  • Kang Song;Jeong Hyeon Lim;Young Chan Yoon;Chu Sik Park;Young Ho Kim
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.548-555
    • /
    • 2023
  • SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent

  • Park, Kyung-Ho;Sohn, Jeong-Soo;Kim, Jong-Seok
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.478-481
    • /
    • 2001
  • The spent petrochemical catalyst used in the manufacturing process of terephthalic-acid contains valuable metals such as cobalt and manganese. To recover these metals, sulfuric acid leaching was performed with hydrogen peroxide as a reducing agent. Low extractions of Mn, Co and Fe were obtained by sulfuric acid leaching without reducing agent. With adding hydrogen peroxide as a reducing agent, the high extraction of these metals could be obtained. Different from general leaching experiment, the extraction rates of metal components were decreased with increasing reaction temperature in this case. Under the optimum condition, the extraction rates of Mn, Co and Fe were 93.0%, 87.0% and 100% respectively.

  • PDF

Co/HY 제올라이트 촉매상에서 Bicyclo[2.2.1]hepta-2,5-diene 이량화를 통한 고에너지밀도 연료 제조 (Synthesis of High-energy-density Fuel through Dimerization of Bicyclo[2.2.1]hepta-2,5-diene over Co/HY Catalyst)

  • 김종진;심범석;이가영;한정식;전종기
    • 공업화학
    • /
    • 제29권2호
    • /
    • pp.185-190
    • /
    • 2018
  • Bicyclo[2.2.1]hepta-2,5-diene (norbornadiene)의 이량체는 고에너지밀도 연료로 사용 가능하다. 본 연구의 목적은 Co 담지가 HY 제올라이트 촉매의 산특성에 미치는 영향과 norbornadiene의 이량화 반응에 미치는 영향을 고찰하는 것이다. HY 제올라이트 촉매에 코발트를 담지하면 산점의 양은 큰 변화가 없으나 산 세기는 약해졌다. 이는 $Br{\ddot{o}}nsted$산의 감소와 Lewis산의 증가에 기인한 것으로 볼 수 있다. HY 제올라이트와 Co/HY를 촉매로 사용하여 norbornadiene 이량화 반응을 수행한 결과, Co/HY 촉매는 HY 제올라이트 촉매보다 더 높은 norbornadiene 전환율과 norbornadiene 이량체수율을 나타내었다. Norbornadiene 이량화 반응에서 Co/HY 촉매의 활성이 HY 촉매보다 더 높은 것은 Lewis 산점의 역할이 더 크기 때문으로 해석할 수 있다. Co/HY 촉매를 이용하여 제조한 norbornadiene 이량체의 밀도와 발열량이 문헌에 알려진 값과 잘 일치하며, 본 연구에서 제조한 norbornadiene 이량체가 고에너지밀도 연료로서 사용 가능하다는 것을 확인하였다.

Investigation of the Effective Catalyst for Organosolv Pretreatment of Liriodendron tulipifera

  • Koo, Bon-Wook;Gwak, Ki-Seob;Kim, Ho-Yong;Choi, Joon-Weon;Yeo, Hwan-Myeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.149-158
    • /
    • 2010
  • Organosolv pretreatments which utilized sulfuric acid, sodium hydroxide and ammonia as catalysts were conducted to screen the effective catalyst for organosolv pretreatment of Liriodendron tulipifera. The enzymatic hydrolysis was achieved effectively with sulfuric acid (74.2%) and sodium hydroxide (63.7%). They were thus considered as effective catalysts for organosolv pretreatment of L. tulipifera. The organosolv pretreatments with sulfuric acid and sodium hydroxide showed a different behavior on the reaction mechanism. The pretreatment with sulfuric acid increased the biomass roughness and pore numbers. On the other hand, the pretreatment with sodium hydroxide enhanced the surface area due to the size reduction and minor defiberization which were caused by hemicellulose degradation at an initial stage and more defiberization by lignin degradation at a later stage. The organosolv pretreatment with sodium hydroxide was performed at several different conditions to evaluate effectiveness of sodium hydroxide as a catalyst for organosolv pretreatment. According to the results of enzymatic digestibility, the changes of chemical composition and the morphological analysis of pretreated biomass, it was suggested that the pretreatment time impacted primarily on enzymatic hydrolysis. Increase in surface area during the pretreatment was a major cause for improvement in enzymatic digestibility when sodium hydroxide was used as a catalyst.

Preparation, Characterization and First Application of Alumina Supported Polyphosphoric Acid (PPA/Al2O3) as a Reusable Catalyst for the Synthesis of 14-Aryl-14H-dibenzo[a, j]xanthenes

  • Norouzi, Haniyeh;Davoodnia, Abolghasem;Bakavoli, Mehdi;Zeinali-Dastmalbaf, Mohsen;Tavakoli-Hoseini, Niloofar;Ebrahimi, Mahmoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2311-2315
    • /
    • 2011
  • Alumina supported polyphosphoric acid (PPA/$Al_2O_3$) was successfully prepared by impregnation of alumina support by polyphosphoric acid and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The catalytic behavior of this new solid acid supported heterogeneous catalyst was checked in the synthesis of 14-aryl-14H-dibenzo[a, j]xanthenes by cyclocondensation reaction of ${\beta}$-naphthol and aryl aldehydes under solvent-free conditions. The results showed that the novel catalyst has high activity and the desired products were obtained in very short reaction times with high yields. Moreover, the catalyst can be easily recovered by filtration and reused at least three times with only slight reduction in its catalytic activity.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.

고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구 (Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride)

  • 박용범;최재형;임한권;우희철
    • 청정기술
    • /
    • 제20권2호
    • /
    • pp.108-115
    • /
    • 2014
  • 셀룰로우스(cellulose)를 5-히드록시메틸푸르푸랄(5-hydroxymethylfurfural, 5-HMF)로 직접 전환하기 위해 이온성 액체 용매하에서 다양한 금속염화물과 산 촉매를 비교 연구하였다. 사용한 금속염화물은 Sn(II), Zn(II), Al(III), Fe(III), Cu(II), Cr(III)를 포함한 염화물을 비교하였으며 산 촉매는 산성 이온성 액체를 고정화하여 사용하였다. 비교를 위하여 $H_2SO_4$, HCl, Amberlyst-15와 DOWEX50x8을 사용하였다. 제조한 촉매의 산도와 산 밀도 특성은 Hammett Indicator 지시약을 통하여 분석하였다. 5-HMF의 선택도 및 수율은 반응온도, 반응시간과 촉매 비를 통하여 확인하였다. 사용한 촉매들 중에서 5-HMF의 선택도는 $CrCl_3-6H_2O$$SiO_2-[ASBI]HSO_4$를 사용하였을 때에 가장 높게 나타났으며, 상용화 고체 산인 Amberlyst-15와 DOWEX50x8에 비하여 활성이 높다는 것을 확인할 수 있었다. 5-HMF의 선택도는 산 촉매의 산도와 반응에 사용된 촉매비에 영향이 있음을 확인할 수 있었으며, 반응 중 재수화 반응이 일어나 레불린산(levulinic acid)이 생성된다는 것을 확인하였다.

Tetra Ethyl Ortho Silicate의 수화 및 중합에 미치는 촉매의 영향 (The Effects of Catalyst on the Hydrolysis and Polymerization of TEOS)

  • 정형진;이전국
    • 한국세라믹학회지
    • /
    • 제27권1호
    • /
    • pp.86-90
    • /
    • 1990
  • The shape and characteristics of polymers in hydrolzed and polymerized sol were affected by the types of catalysts. In our research, the contents of water and catalysts were constant and the types of catalyst were varied. In the case of acid catalysts, polymers in sol were linear and spinnable. The shapes of polymer were affected by the types of anions in acid catalysts. In the case of catalyst having anions, F, Cl, in the same period, the effects were similar. But in the case of base catalysts polymers were rigid rod like and not spinnable.

  • PDF

Phosphomolybdic Acid Supported on Silica Gel as an Efficient and Reusable Catalyst for Cyanosilylation of Aldehydes

  • Kadam, Santosh T.;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1320-1322
    • /
    • 2008
  • Phosphomolybdic acid supported on silica gel (PMA-$SiO_2$) is an efficient catalyst for the activation of TMSCN for the facile cyanosilylation of various aldehydes. Cyano transfer from TMSCN to aldehyde proceeds smoothly at rt in presence of 0.8 mol % of PMA-$SiO_2$ leading to a range of cyanosilylether in excellent yield (mostly over 93%) within short reaction time (30 min). The catalyst can be recovered and reused several times without loss of activity.