• Title/Summary/Keyword: Acicular actinolite and tremolite

Search Result 3, Processing Time 0.022 seconds

Morphological Diversity of Tremolite-actinolite Series Amphiboles with Implications to the Evaluation of Naturally Occurring Asbestos (투각섬석-양기석 계열 각섬석의 형태적 다양성과 자연 석면 평가에서의 의미)

  • Jeong, Gi-Young;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • Electron microscopy of the tremolite-actinolite series amphiboles from the naturally occurring asbestos locality showed the morphological diversity including fibrous, acicular, and prismatic. Very thin, long, and flexible fibers of constant width form ropy bundles or mats. Acicular particles are slightly thick, long, elastic, and easily separated from the bundle of parallel rods. Acicular fragments of lower aspect ratio are formed during the crushing of the amphibole prism. Morphological features of the amphiboles are different depending on their localities and vary in a specimen. Morphological continuum between amphibole fiber and prism requires the establishment of reliable identification criterions and sample preparation protocol based on the relation between carcinogenicity and morphological features.

Petrological and Mineralogical Characteristics of Amphibolite Used as Rock Bowl and Pot: Implications for Its Utility and Stability (음식 용기로 사용하는 각섬암의 암석-광물학적 특성: 그 효용성과 안정성에 대한 고찰)

  • Kim, Hyeong-Soo;Choi, Ho-Jeong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.154-165
    • /
    • 2008
  • Rock bowls and pots used in restaurants are one of the popular usages of natural rocks in Korea. Most rock bowls and pots are made of Mg- and Ca-rich amphibolite composed of hornblende, actinolite, tremolite, diopside, plagioclase. Hornblende occurs as prismatic crystal habit, and belongs to Mg-hornblende to tschermakite. Actinolite and tremolite occur as acicular form (aspect ratio $0.10{\sim}0.13$), and ranges 0.65 to 0.90 in Mg/(Mg+Fe) ratio. These acicular actinolite and tremolite are non-asbestos minerals. However to use of rocks containing these minerals as tableware it is needed to regulatory guidelines for stability and utility based on petrological and mineralogical characteristics. Discrepancy of rock occurrence and mineral chemistry between commercial rock bowls and original rocks indicate that most rock bowls are made of uncertain amphibolite in original location. Consequently, there is a potential risk to use inappropriate amphibolites as tableware. Therefore, it is needed to systematically research on geology and biology, and manage commercial rock bowls and pots used in Korean restaurants.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.