• Title/Summary/Keyword: Achromobacter protease I (API)

Search Result 3, Processing Time 0.017 seconds

Alteration of Substrate Specificity of Achromobacter Protease l (API) (Achrobacter Protease I (API)의 기질특이성의 전환)

  • Lim, Seong-Il;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.196-201
    • /
    • 1997
  • Assuming that Asp225 is the substrate specificity determinant of Achromobacter pretense I (APl) which is lysine-specific serine protease, the 225th residue was substituted for other amino acids with a hope that the substrate specificity of a mutant API is altered. Furthermore, to maturate preform of mutant API autocatalytically, Lys(-1) was also replaced by Met, Asp, or Glu. However, all the mutants were not expressed, or accumulated as inactive precursor proteins. This result implicats that Asp225 plays a critical rol in restricted substrate specificity as a lysylendopeptidase but the substrate specificity of API is not determined only by the nature of residue 225.

  • PDF

Identification of Substrate Specificity Determinant of Achromobacter Protease I (API) and Catalytic Activity of Mutant D225E for Ornithine Substrate (Achromobacter Protease I (API)의 기질특이성 결정기의 동정과 변이체[D225E]의 Ornithine 기질에 대한 촉매활성)

  • Lim, Seong-Il;Kwon, Oh-Jin;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.189-195
    • /
    • 1997
  • The structural basis of Iysine specificity of Achromobacter protease I (API) was investigated by means of site-directed mutagenesis. The precursor protein in which Glu190, one of the two candidates for determining Iysine specificity, was substituted by glutamine, aspartic acid or leucine was processed autocatalytically to attaln full pretense activity with lysine specificity. The substitution of the other candidate, Asp225, for asparagine or leucine produced no mature active forms of pro-API. The precursor protein of the mutant D225E slowly matured autocatalytically. The lysylendopeptidase activity of the mature D225E was 0.25% of that of native API, and this reduced activity is mainly due to a decrease in the affinity of the enzyme for lysine. These results suggest that Asp225 plays a critical rol in restricted substrate specificity as a lysylendopeptidase. However, D225E exhibited no measurable activity for synthetic ornithine substrate. Since the hydroxyl group of Ser194 in this mutant retained essentially the same reactivity to DFP or PMSF as that in native API, it can be noted that a methylene unit longer side chain of residue 225 is not compensated by a methylene unit shorter side chain at subsite P1 in the bound substrate.

  • PDF

The Effect of the Hydrogen Bond Network in the $S_1$-pocket on Catalytic Activity of Serine Protease, Achromobacter Protease I (API)

  • Lim, Seong-Il;Byun, Myung-Woo;Choi, Cheong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.158-164
    • /
    • 1998
  • Crystal structural analyses of the API-TLCK complex revealed that the ${\epsilon}$-amino group (NZ) of the lysyl part of TLCK forms hydrogen bonds with OD1 of $Asp^225$ which is a substrate specificity determinant of API, OG of $Ser^214$, O of $Ser^214$, OG1 of $Thr^189$, and O of $Thr^189$ l89/. The ${\beta}$-carboxyl oxygen of $Asp^225$ forms hydrogen bonds with the NE1 of $Trp^182$. From these observations, it is thought that besides $Asp^225$, $Thr^189$, $Ser^214$, and $Trp^182$ may also contribute to the steric specificity for lysine and high proteolytic activity of API. The side-chain hydroxyl groups of $Thr^189$ and $Ser^214$ were removed to elucidate the role of these hydrogen bonds in the $S_1$-pocket. The $k_{cat}$/$K_m$ of T189V, S214A, and T189V.S214A were decreased to 1/4, 1/3, and 1/46, respectively, of the value for native API. The decreased activities were mainly due to the increase of $K_m$. The CD and fluoroscence spectra of the three mutants were similar to those of wild-type API. With regards to the kinetic parameters ($K_i\;and\;k_2$) of mutants for the reaction involving TLCK and DFP, $k_2$decreased by increase of $K_1$ only. These results suggest that the decreased catalytic activity of these mutants is caused by the partial loss of the hydrogen bond network in the $S_1$-pocket. On the other hand, the similarity of enzymatic properties between W182F and the native enzyme suggests that the hydrogen bond between OD2 of $Asp^225$ and NE1 of $Trp^182$ is not directly related to the reaction of $Asp^225$ with the substrate.

  • PDF