• Title/Summary/Keyword: Acetic Acid Removal

Search Result 81, Processing Time 0.022 seconds

Removal of acetic acid from wastewater by esterification in the membrane reactor

  • Unlu, Derya;Hilmioglu, Nilufer Durmaz
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • Acetic acid can be removed from wastewater by esterification in a membrane reactor. Pervaporation membrane reactor (PVMR) is an alternative process to conventional separation processes. It is an environmentally friendly process. The main advantages of the PVMR are simultaneous water removal and production of an ester economically. In this study, the synthetic wastewater has been used. Esterification reaction of acetic acid with isopropanol has been studied in the presence of tungstosilicic acid hydrate as a catalyst in a batch reactor and in a PVMR. The effects of important operating parameters such as reaction temperature, initial molar ratio of isopropanol to acetic acid and catalyst concentration has been examined. Removal of acetic acid (conversion of acetic acid) was obtained as 85% using a PVMR by removal of water from the reaction mixture.

Effects of Main Constituents of W/O Emulsion on Removal of Acetic Acid in a Simulated Hemicellulosic Hydrolysate (W/O 에멀젼의 주요 구성 성분들이 모사 헤미셀룰로오스 가수분해액에 있는 초산의 제거에 미치는 영향)

  • Lim, Sung Jin;Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.789-795
    • /
    • 2014
  • Acetic acid is the most abundant and serious ethanol fermentation inhibitor in dilute-acid hemicellulosic hydrolysates. A mixture of xylose, acetic acid and sulfuric acid was chosen as a simulated hemicellulosic hydrolysate so as to find an optimal separation system to selectively remove acetic acid from the hydrolysates. In order to attain the purpose, emulsion liquid membrane was applied to removal of acetic acid from the simulated hemicellulosic hydrolysate. The effects of main constituents of water-in-oil (W/O) emulsion, such as amine extractant type, surfactant composition, additive type, and type and concentration of stripping agent, on extraction of acetic acid, xylose, and sulfuric acid in the simulated hemicellulosic hydrolysate were investigated. Under specific experimental conditions, degree of extraction of acetic acid was higher than 95% while loss of xylose was insignificant, which means that the current emulsion liquid membrane can be an economically feasible process.

Remediation of Heavy Metals from Contaminated Ground by Soil Washing Technique (토양세척기법에 의한 중금속 오염토의 정화)

  • 장경수;강병희;김우태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.44-48
    • /
    • 2002
  • Washing technique using solubilization and surfactant as a extractant was studied by removing contaminants from the cohesive soil contaminated with heavy metal. For this purpose, the laboratory desorption batch tests were peformed in the kaolinite contaminated with lead by using acetic acid as a solubilization and SDS as a anionic surfactant. In desorption batch tests, the effects of extractant concentration and mixing ratio were investigated and also the coupling effects of acetic acid added with surfactant were considered. Test results show that the removal efficiency of acetic acid as a extractant in the kaolinite contaminated with lead increased with increasing the concentration of acetic acid and the acetic acid was found to be more effective when adding CMC 2 or 3 of surfactant. Additionally, regardless of the initial concentration, the efficiency of lead removal from the contaminated soil increased with increasing shaking ratio.

  • PDF

Enbancement of Treatement Efficiency in a Biological Nutrient Removal Process by addition of Volatile Fatty Acids (휘발성 지방산의 주입을 통한 생물학적 영양염류 제거공정의 효율증진에 관한 연구)

  • Choung, Yoon Kyoo;Ko, Kwang Baik;Kim, Sue Jin;Yim, Seong Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.73-82
    • /
    • 1996
  • The removal efficiencies of organic substrates, nitrogen and phosphorus in the anaerobic-aerobic biological phosphorus removal process were investigated by addition of acetic acid, propionic acid and butyric acid which are normal volatile fatty acids contained in anaerobic digester supernatants. Substrate utilization coefficients for the phosphorus release and uptake were also estimated. The effect of a VFA, which showed higher phosphorus removal efficiency than the other VFAs did, was also studied in an anaerobic-aerobic-anoxic biological nutrient removal process. For the anaerobic-aerobic process added by VFA, the phosphorus removal efficiencies were up to about 68%, 55% and 61% for the reactors of acetic acid, propionic acid and butyric acid added, respectively, which indicates the efficiencies were increased by about 8-21%, comparing to that of 47% for the reactor with no VFA added. There were no significant difference in removal efficiencies for organic substrate and $NH_3-N$ without regard to addition of VFA. However, the removal efficiency of total nitrogen was increased in the case of VFA added, since $NO_3-N$ was less produced. For the anaerobic-aerobic-anoxic process added VFA, the removal efficiencies for $NH_3-N$ and $PO{_4}^{3-}-P$ were increased by 5% and 13%, respectively, comparing with them in the reactors not added VFA.

  • PDF

Removal Character of Nitrogen and Phosphorus in Swine Wastewater with Injection Time of Acetic Acid on SBR (SBR에서 아세트산 주입시간변화에 따른 양돈폐수의 질소, 인 제거특성)

  • Huh, Mock;Lee, Yong-Doo;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.132-137
    • /
    • 2003
  • This study was carried out to investigate removal character of nitrogen and phosphorus with injection time of acetic acid on SBR, which is one of the biological treatment process. Wastewater used in experiment period was swine wastewater with character, relatively lower organic material concentration than nitrogen concentration. In the experiment with injection time of acetic acid, run 1 wasn't injected acetic acid during the anoxic period, and run 2 was injected intermittently acetic acid during the anoxic period of 15 hours. And run 3 was injected intermittently during the anoxic period of 3hours from end of wastewater filling. And filing time of the wastewater was 20hour from run 1 to run 3. In the study, the highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 2(the ratio of mixing/aeration time : 16.5/5.5, injection time of acetic acid : 15hours) and T-P was obtained by the operation condition of Run 3(the ratio of mixing/aeration time : 16.5/5.5, injection time of acetic acid : 3hours),and removal efficiency of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

  • Pham, Thi Thu Huong;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at $25^{\circ}C$ using a synthetic fermentation broth comprising $20.0g\;l^{-1}$ acetic acid and $5.0g\;l^{-1}$ ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

Improvement of Interfacial Adhesion for Surface treated Rice Husk Flour-Filled Polypropylene Bio-Composites (표면처리에 의한 왕겨분말-폴리프로필렌 바이오복합재의 계면 접착력 향상)

  • Lee, Byoung-Ho;Kim, Hee-Soo;Choi, Seung-Woo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.38-45
    • /
    • 2006
  • The main objective of this study is the improvement of the interfacial adhesion of RHF-polypropylene (PP) bio-composites through NaOH and acetic acid treated RHF. After manufacturing of untreated and NaOH and acetic acid treated RHF filled PP bio-composites, the effect on interfacial adhesion of bio-composites was investigated. Tensile strength of the bio-composites made from treated RHF with NaOH and acetic acid was higher than that of the untreated bio-composites. The RHF surface before and after NaOH and acetic acid treatment was clearly confirmed by scanning electron microscopy (SEM) micrograph. It was found that both treatments result in a removal of impurity materials of RHF surface by SEM micrographs. The chemical structures of untreated and NaOH and acetic acid treated RHF were confirmed by fourier transform infrared (FTIR). The crystallization structure and crystallinity of non-treated, NaOH and acetic acid treated RHF were investigated by wide-angle X-ray scattering (WAXS).

Separation of Acetic Acid from Simulated Biomass Hydrolysates Containing Furans by Emulsion Liquid Membranes with an Organophosphorous Extractant (유기인산계 추출제를 이용한 에멀젼형 액막법에 의해 푸란유도체를 함유하는 모사 바이오매스 가수분해액으로부터 초산의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.687-693
    • /
    • 2018
  • The selective removal and recovery of fermentation inhibitors during purification of sugars from biomass hydrolysates can increase the economic efficiency of the entire process to produce bioalcohol from lignocellulosic biomass. This study investigated the effect of furans in phenols-free biomass hydrolysate on acetic acid extraction in an emulsion liquid membrane system. Under specific operating conditions, more than 99% of acetic acid could be extracted within 5 minutes, and the degrees of extraction of furfural and 5-hydroxymethylfurfural were about 10% and 4%, respectively. The extraction rate of acetic acid was also lower at a higher initial concentration of furfural in the feed phase, which was greater for furfural than 5-hydroxymethylfurfural. Thus, if furfural is first removed from the hydrolysate prior to acetic acid extraction, emulsion liquid membrane would be a more economically efficient way of removing acetic acid.

Selective Removal of Acetic Acid for the Effective Production of Succinic Acid using the Various Amino Extractants and Solvents (효율적 숙신산 생산을 위한 다양한 아민추출제와 용매를 이용한 아세트산의 선택적 추출제거)

  • Huh Yun Suk;Hong Yeon Ki;Jun Young-Si;Hong Won Hi
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.238-243
    • /
    • 2005
  • Succinic acid has recently been drawing much interest as a raw material for biodegradable polymer. In this study acetic acid was removed by reactive extraction with various amines dissolved in various diluents. Distribution coefficients were determined as the kind of amines, diluents, and pHs of continuous phase. The extraction capacity increased with the polarity of diluent and the decrease of pH from the artificial binary solution. Based on the different extractability for succinic acid and acetic acid from the artificial binary solution, the removal of acetic acid from fermentation broth was investigated using various amines and diluents. In addition, the extractability and selectivity of CLA for succinic acid and acetic acid from fermentation broth were higher than that of straight solvent extraction.

Recovery of phosphoric acid from the waste acids in semiconductor manufacturing process (반도체 제조공정에서 발생하는 혼산폐액으로부터 고순도 인산 회수)

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Ahn, Jae-Woo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.90-94
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to removal of impurities to tess than 1ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, we have been clearly established that a mixed system of solvent extraction, diffusion dialysis and ion-exchange technique, which made individually the most of characteristics is developed to commercialize in an efficient system for recovering the high-purity phosphoric acid. By applying vacuum evaporation, the yield of the process are almost 99% removal of nitric acid and acetic acid was achieved. And by applying the solvent extraction method with tri-octyl phosphate(TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio O/A=1/3 with four stages and the stripping of nitric acid from organic phase is attained at a ration of O/A=1 with six stages by distilled water. About 97% and 76% removal of Al and Mo were achieved by diffusion dialysis. Essentially complete less than 1ppm removal of Al, Mo by using ion exchange ion resin and purification of the phosphoric acid was obtain.

  • PDF