• 제목/요약/키워드: Accuracy of performance

검색결과 8,200건 처리시간 0.039초

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

Comparative Study of Tokenizer Based on Learning for Sentiment Analysis (고객 감성 분석을 위한 학습 기반 토크나이저 비교 연구)

  • Kim, Wonjoon
    • Journal of Korean Society for Quality Management
    • /
    • 제48권3호
    • /
    • pp.421-431
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the tokenizer in natural language processing for customer satisfaction in sentiment analysis. Methods: In this study, a supervised learning-based tokenizer Mecab-Ko and an unsupervised learning-based tokenizer SentencePiece were used for comparison. Three algorithms: Naïve Bayes, k-Nearest Neighbor, and Decision Tree were selected to compare the performance of each tokenizer. For performance comparison, three metrics: accuracy, precision, and recall were used in the study. Results: The results of this study are as follows; Through performance evaluation and verification, it was confirmed that SentencePiece shows better classification performance than Mecab-Ko. In order to confirm the robustness of the derived results, independent t-tests were conducted on the evaluation results for the two types of the tokenizer. As a result of the study, it was confirmed that the classification performance of the SentencePiece tokenizer was high in the k-Nearest Neighbor and Decision Tree algorithms. In addition, the Decision Tree showed slightly higher accuracy among the three classification algorithms. Conclusion: The SentencePiece tokenizer can be used to classify and interpret customer sentiment based on online reviews in Korean more accurately. In addition, it seems that it is possible to give a specific meaning to a short word or a jargon, which is often used by users when evaluating products but is not defined in advance.

Evaluation of Thermodynamic Method for Pump Performance Measurement (열역학적 방법을 이용한 펌프 운전성능 평가법 검토)

  • Kang, Shin-Hyoung;Kim, Jin-Kwon;Hong, Soon-Sam;Yates, Alex
    • The KSFM Journal of Fluid Machinery
    • /
    • 제3권3호
    • /
    • pp.25-30
    • /
    • 2000
  • Thermodynamic method of pump performance measurement calculates pump efficiency and flowrate by measuring fluid temperature increase and pressure rise through the pump. The theory of this method is investigated and precise comparison experiment with classical hydraulic method was conducted to verify the accuracy. Classical hydraulic pump performance measurement results and Yatesmeter results based on the thermodynamic method showed good agreement in measured performance.

  • PDF

Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools (자유곡면가공기용 초정밀 회전테이블의 설계 및 평가)

  • Hwang, Joo-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제27권7호
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.

Comparison the Mapping Accuracy of Construction Sites Using UAVs with Low-Cost Cameras

  • Jeong, Hohyun;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • 제35권1호
    • /
    • pp.1-13
    • /
    • 2019
  • The advent of a fourth industrial revolution, built on advances in digital technology, has coincided with studies using various unmanned aerial vehicles (UAVs) being performed worldwide. However, the accuracy of different sensors and their suitability for particular research studies are factors that need to be carefully evaluated. In this study, we evaluated UAV photogrammetry using smart technology. To assess the performance of digital photogrammetry, the accuracy of common procedures for generating orthomosaic images and digital surface models (DSMs) using terrestrial laser scanning (TLS) techniques was measured. Two different type of non-surveying camera(Smartphone camera, fisheye camera) were attached to UAV platform. For fisheye camera, lens distortion was corrected by considering characteristics of lens. Accuracy of orthoimage and DSM generated were comparatively analyzed using aerial and TLS data. Accuracy comparison analysis proceeded as follows. First, we used Ortho mosaic image to compare the check point with a certain area. In addition, vertical errors of camera DSM were compared and analyzed based on TLS. In this study, we propose and evaluate the feasibility of UAV photogrammetry which can acquire 3 - D spatial information at low cost in a construction site.

Load Shedding for Temporal Queries over Data Streams

  • Al-Kateb, Mohammed;Lee, Byung-Suk
    • Journal of Computing Science and Engineering
    • /
    • 제5권4호
    • /
    • pp.294-304
    • /
    • 2011
  • Enhancing continuous queries over data streams with temporal functions and predicates enriches the expressive power of those queries. While traditional continuous queries retrieve only the values of attributes, temporal continuous queries retrieve the valid time intervals of those values as well. Correctly evaluating such queries requires the coalescing of adjacent timestamps for value-equivalent tuples prior to evaluating temporal functions and predicates. For many stream applications, the available computing resources may be too limited to produce exact query results. These limitations are commonly addressed through load shedding and produce approximated query results. There have been many load shedding mechanisms proposed so far, but for temporal continuous queries, the presence of coalescing makes theses existing methods unsuitable. In this paper, we propose a new accuracy metric and load shedding algorithm that are suitable for temporal query processing when memory is insufficient. The accuracy metric uses a combination of the Jaccard coefficient to measure the accuracy of attribute values and $\mathcal{PQI}$ interval orders to measure the accuracy of the valid time intervals in the approximate query result. The algorithm employs a greedy strategy combining two objectives reflecting the two accuracy metrics (i.e., value and interval). In the performance study, the proposed greedy algorithm outperforms a conventional random load shedding algorithm by up to an order of magnitude in its achieved accuracy.

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

BASE DRAG PREDICTION OF A SUPERSONIC MISSILE USING CFD (CFD를 이용한 초음속 유도탄 기저항력 예측)

  • Lee Bok-Jik
    • Journal of computational fluids engineering
    • /
    • 제11권3호
    • /
    • pp.59-63
    • /
    • 2006
  • Accurate prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Loman(B-L), Spalart-Allmaras(S-A), k-$\varepsilon$, k-$\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control fins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

A Study on Feature-Based Visual Servoing Control of Robot System by Utilizing Redundant Feature

  • Han, Sung-Hyun;Hideki Hashimoto
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.762-769
    • /
    • 2002
  • This paper presents how effective it is to use many features for improving the speed and accuracy of visual servo systems. Some rank conditions which relate the image Jacobian to the control performance are derived. The focus is to describe that the accuracy of the camera position control in the world coordinate system is increased by utilizing redundant features in this paper. It is also proven that the accuracy is improved by increasing the number of features involved. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm robot manipulator made by Samsung Electronic Co. Ltd..

Posture Sensing of a Tractor Using a DGPS and a Gyro Compass (DGPS와 Gyro Compass를 이용한 트랙터의 자세검출)

  • 정선옥;박원규;김상철;박우풍;장영창
    • Journal of Biosystems Engineering
    • /
    • 제23권2호
    • /
    • pp.179-186
    • /
    • 1998
  • This study was conducted to sense posture of an autonomous tractor using a DGPS, a gyro compass, and a potentiometer. Posture sensing system was constructed and its accuracy was evaluated. The accuracy of DGPS was evaluated under stationary and moving conditions, and the performance of the gyro compass and the potentiometer was investigated by measuring bearing and steering angles, respectively. Also, the effect of DGPS interference by obstacles was evaluated experimentally. The position accuracy was about 6.6cm(95%) under the stationary condition and 10 cm at sharp turning condition. Steering angle of the tractor could be related linearly to the output of the potentiometer that was installed on the rotating center of a knuckle arm. The positioning accuracy of the DGPS varied significantly according to the number of visible GPS satellites, but was good with more than 7 satellites. The DGPS gave bad solutions for sensing the posture of tractor when signals from satellites or the correction data from the base were interfered by obstacles.

  • PDF