• Title/Summary/Keyword: Accuracy of Selection

Search Result 1,156, Processing Time 0.028 seconds

A Novel Statistical Feature Selection Approach for Text Categorization

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1397-1409
    • /
    • 2017
  • For text categorization task, distinctive text features selection is important due to feature space high dimensionality. It is important to decrease the feature space dimension to decrease processing time and increase accuracy. In the current study, for text categorization task, we introduce a novel statistical feature selection approach. This approach measures the term distribution in all collection documents, the term distribution in a certain category and the term distribution in a certain class relative to other classes. The proposed method results show its superiority over the traditional feature selection methods.

Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy (단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안)

  • Lim, Jong-Hun;Kim, Si-Yeon;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

Optimization of Swine Breeding Programs Using Genomic Selection with ZPLAN+

  • Lopez, B.M.;Kang, H.S.;Kim, T.H.;Viterbo, V.S.;Kim, H.S.;Na, C.S.;Seo, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.640-645
    • /
    • 2016
  • The objective of this study was to evaluate the present conventional selection program of a swine nucleus farm and compare it with a new selection strategy employing genomic enhanced breeding value (GEBV) as the selection criteria. The ZPLAN+ software was employed to calculate and compare the genetic gain, total cost, return and profit of each selection strategy. The first strategy reflected the current conventional breeding program, which was a progeny test system (CS). The second strategy was a selection scheme based strictly on genomic information (GS1). The third scenario was the same as GS1, but the selection by GEBV was further supplemented by the performance test (GS2). The last scenario was a mixture of genomic information and progeny tests (GS3). The results showed that the accuracy of the selection index of young boars of GS1 was 26% higher than that of CS. On the other hand, both GS2 and GS3 gave 31% higher accuracy than CS for young boars. The annual monetary genetic gain of GS1, GS2 and GS3 was 10%, 12%, and 11% higher, respectively, than that of CS. As expected, the discounted costs of genomic selection strategies were higher than those of CS. The costs of GS1, GS2 and GS3 were 35%, 73%, and 89% higher than those of CS, respectively, assuming a genotyping cost of $120. As a result, the discounted profit per animal of GS1 and GS2 was 8% and 2% higher, respectively, than that of CS while GS3 was 6% lower. Comparison among genomic breeding scenarios revealed that GS1 was more profitable than GS2 and GS3. The genomic selection schemes, especially GS1 and GS2, were clearly superior to the conventional scheme in terms of monetary genetic gain and profit.

Removal of Heterogeneous Candidates Using Positional Accuracy Based on Levenshtein Distance on Isolated n-best Recognition (레벤스타인 거리 기반의 위치 정확도를 이용하여 다중 음성 인식 결과에서 관련성이 적은 후보 제거)

  • Yun, Young-Sun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.428-435
    • /
    • 2011
  • Many isolated word recognition systems may generate irrelevant words for recognition results because they use only acoustic information or small amount of language information. In this paper, I propose word similarity that is used for selecting (or removing) less common words from candidates by applying Levenshtein distance. Word similarity is obtained by using positional accuracy that reflects the frequency information along to character's alignment information. This paper also discusses various improving techniques of selection of disparate words. The methods include different loss values, phone accuracy based on confusion information, weights of candidates by ranking order and partial comparisons. Through experiments, I found that the proposed methods are effective for removing heterogeneous words without loss of performance.

Improvement of Localization Accuracy with COAG Features and Candidate Selection based on Shape of Sensor Data (COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상)

  • Kim, Dong-Il;Song, Jae-Bok;Choi, Ji-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2014
  • Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

The Game Selection Model for the Payoff Strategy Optimization of Mobile CrowdSensing Task

  • Zhao, Guosheng;Liu, Dongmei;Wang, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1426-1447
    • /
    • 2021
  • The payoff game between task publishers and users in the mobile crowdsensing environment is a hot topic of research. A optimal payoff selection model based on stochastic evolutionary game is proposed. Firstly, the process of payoff optimization selection is modeled as a task publisher-user stochastic evolutionary game model. Secondly, the low-quality data is identified by the data quality evaluation algorithm, which improves the fitness of perceptual task matching target users, so that task publishers and users can obtain the optimal payoff at the current moment. Finally, by solving the stability strategy and analyzing the stability of the model, the optimal payoff strategy is obtained under different intensity of random interference and different initial state. The simulation results show that, in the aspect of data quality evaluation, compared with BP detection method and SVM detection method, the accuracy of anomaly data detection of the proposed model is improved by 8.1% and 0.5% respectively, and the accuracy of data classification is improved by 59.2% and 32.2% respectively. In the aspect of the optimal payoff strategy selection, it is verified that the proposed model can reasonably select the payoff strategy.

On loss functions for model selection in wavelet based Bayesian method

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1191-1197
    • /
    • 2009
  • Most Bayesian approaches to model selection of wavelet analysis have drawbacks that computational cost is expensive to obtain accuracy for the fitted unknown function. To overcome the drawback, this article introduces loss functions which are criteria for level dependent threshold selection in wavelet based Bayesian methods with arbitrary size and regular design points. We demonstrate the utility of these criteria by four test functions and real data.

  • PDF

A Novel Multihop Range-Free Localization Algorithm Based on Reliable Anchor Selection in Wireless Sensor Networks

  • Woo, Hyunjae;Lee, Chaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.574-592
    • /
    • 2016
  • Range-free localization algorithm computes a normal node's position by estimating the distance to anchors which know their actual position. In recent years, reliable anchor selection research has been gained a lot of attention because this approach improves localization accuracy by selecting the only subset of anchors called reliable anchor. The distance estimation accuracy and the geometric shape formed by anchors are the two important factors which need to be considered when selecting the reliable anchors. In this paper, we study the relationship between a relative position of three anchors and localization error. From this study, under ideal condition, which is with zero localization error, we find two conditions for anchor selection, thereby proposing a novel anchor selection algorithm that selects three anchors matched most closely to the two conditions, and the validities of the conditions are proved using two theorems. By further employing the conditions, we finally propose a novel range-free localization algorithm. Simulation results show that the proposed algorithm shows considerably improved performance as compared to other existing works.

Evaluating Variable Selection Techniques for Multivariate Linear Regression (다중선형회귀모형에서의 변수선택기법 평가)

  • Ryu, Nahyeon;Kim, Hyungseok;Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.5
    • /
    • pp.314-326
    • /
    • 2016
  • The purpose of variable selection techniques is to select a subset of relevant variables for a particular learning algorithm in order to improve the accuracy of prediction model and improve the efficiency of the model. We conduct an empirical analysis to evaluate and compare seven well-known variable selection techniques for multiple linear regression model, which is one of the most commonly used regression model in practice. The variable selection techniques we apply are forward selection, backward elimination, stepwise selection, genetic algorithm (GA), ridge regression, lasso (Least Absolute Shrinkage and Selection Operator) and elastic net. Based on the experiment with 49 regression data sets, it is found that GA resulted in the lowest error rates while lasso most significantly reduces the number of variables. In terms of computational efficiency, forward/backward elimination and lasso requires less time than the other techniques.