• Title/Summary/Keyword: Accuracy assessment of data

Search Result 681, Processing Time 0.026 seconds

Change Vector Analysis : Change detection of flood area using LANDSAT TM Data (LANDSAT TM을 이용한 홍수지역의 변화탐지 : Change Vector Analysis 방법을 중심으로)

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.47-52
    • /
    • 2003
  • Change detection and analysis is a powerful application of remote sensing, in that the spectral resolution of multi-band sensors can be used to advantage in monitoring both significant and subtle land cover changes over time. In this study, the LANDSAT TM data was used to detect the change areas affected by flood from a heavy rainfall. The study area is the Nakdong River located in the Korea peninsular. Among the several change detection techniques, change vector analysis(CVA), principle component analysis(PCA) and image difference approach are utilized in this paper. CVA uses any number of spectral bands from multi-date satellite data to produce change image that yield information of the magnitude and direction of differences pixel values. And accuracy assessment was carried out with a change image produced from three techniques. In result, CVA was found to be the most accurate for detecting areas affected by flood. CVA with the overall accuracy and Kappa coefficient of 97.27 percent and 94.45 percent, respectively.

  • PDF

Method for predicting the diagnosis of mastitis in cows using multivariate data and Recurrent Neural Network (다변량 데이터와 순환 신경망을 이용한 젖소의 유방염 진단예측 방법)

  • Park, Gicheol;Lee, Seonghun;Park, Jaehwa
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • Mastitis in cows is a major factor that hinders dairy productivity of farms, and many attempts have been made to solve it. However, research on mastitis has been limited to diagnosis rather than prediction, and even this is mostly using a single sensor. In this study, a predictive model was developed using multivariate data including biometric data and environmental data. The data used for the analysis were collected from robot milking machines and sensors installed in farmhouses in Chungcheongnam-do, South Korea. The recurrent neural network model using three weeks of data predicts whether or not mastitis is diagnosed the next day. As a result, mastitis was predicted with an accuracy of 82.9%. The superiority of the model was confirmed by comparing the performance of various data collection periods and various models.

Validation of a Real-Time Dose Assessment System over Complex Terrain (복잡한 지형상에서 실시간 피폭해석 시스템 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Hwang, Won-Tae;Choi, Young-Gil;Han, Moon-Hee;Jung, Sung-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • A real-time dose assessment system(FADAS : Following Accident Dose Assessment System) has been developed for the real-time accident consequence assessment against a nuclear accident. Field tracer experiment near Younggwang nuclear power plant was performed to improve the accuracy of developed system and to parameterize the site-specific parameters into the FADAS. The mean values and turbulent components of wind profile obtained through field experiment have been reflected to FADAS with site-specific conditions. The simulated results of diffusion model agreed well with the measured data through tracer experiment. The developed system is being used as a basic module of emergency preparedness system in Korea. The diffusion model which can be reflected site-specific parameters will be improved through field experiments continuously.

  • PDF

Non-intrusive Calibration for User Interaction based Gaze Estimation (사용자 상호작용 기반의 시선 검출을 위한 비강압식 캘리브레이션)

  • Lee, Tae-Gyun;Yoo, Jang-Hee
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • In this paper, we describe a new method for acquiring calibration data using a user interaction process, which occurs continuously during web browsing in gaze estimation, and for performing calibration naturally while estimating the user's gaze. The proposed non-intrusive calibration is a tuning process over the pre-trained gaze estimation model to adapt to a new user using the obtained data. To achieve this, a generalized CNN model for estimating gaze is trained, then the non-intrusive calibration is employed to adapt quickly to new users through online learning. In experiments, the gaze estimation model is calibrated with a combination of various user interactions to compare the performance, and improved accuracy is achieved compared to existing methods.

Urban Sprawl prediction in 2030 using decision tree (의사결정나무를 활용한 2030년 도시 확장 예측)

  • Kim, Geun-Han;Choi, Hee-Sun;Kim, Dong-Beom;Jung, Yee-Rim;Jin, Dae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.125-135
    • /
    • 2020
  • The uncontrolled urban expansion causes various social, economic problems and natural/environmental problems. Therefore, it is necessary to forecast urban expansion by identifying various factors related to urban expansion. This study aims to forecast it using a decision tree that is widely used in various areas. The study used geographic data such as the area of use, geographical data like elevation and slope, the environmental conservation value assessment map, and population density data for 2006 and 2018. It extracted the new urban expansion areas by comparing the residential, industrial, and commercial zones of the zoning in 2006 and 2018 and derived a decision tree using the 2006 data as independent variables. It is intended to forecast urban expansion in 2030 by applying the data for 2018 to the derived decision tree. The analysis result confirmed that the distance from the green area, the elevation, the grade of the environmental conservation value assessment map, and the distance from the industrial area were important factors in forecasting the urban area expansion. The AUC of 0.95051 showed excellent explanatory power in the ROC analysis performed to verify the accuracy. However, the forecast of the urban area expansion for 2018 using the decision tree was 15,459.98㎢, which was significantly different from the actual urban area of 4,144.93㎢ for 2018. Since many regions use decision tree to forecast urban expansion, they can be useful for identifying which factors affect urban expansion, although they are not suitable for forecasting the expansion of urban region in detail. Identifying such important factors for urban expansion is expected to provide information that can be used in future land, urban, and environmental planning.

Convolutional neural network-based data anomaly detection considering class imbalance with limited data

  • Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.

Delivery of Therapist's Intervention to the Education of Ayres Sensory Integration$^{(R)}$ (ASI$^{(R)}$) (Ayres Sensory Integration (ASI$^{(R)}$) 중재 교육에 따른 치료사의 치료 수행도 변화)

  • Shin, Ye-Na;Hong, Eunkyoung
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.12 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Objective : This study was to perform the education of the ASI$^{(R)}$ intervention for six occupational therapists and to know the delivery of ASI$^{(R)}$ core principle through a self-assessment, a peer-assessment, an expert-assessment. Methods : The study performed from November 2013 to June 2014 for six occupational therapists without completion of the education of ASI$^{(R)}$ intervention. The participants were educated about the ASI$^{(R)}$ intervention during 8 weeks and took and assessed films before and after education. The assessment was the self-assessment, the peer-assessment, the expert-assessment and the data of assessment was analyzed by Mann-Whitney and ICC. Results : The result of process factors before and after education according to methods of assessment, the self-assessment was significant in 'self-regulation,' 'collaboration,' 'ensures success,' 'play,' 'alliance,' and 'total item'. The peer-assessment was significant in all item exception 'safety'. The expert-assessment was significant in all items exception 'sensory opportunities'. The results of self-assessment and expert-assessment before and after the education of ASI$^{(R)}$ intervention were significant in 'safety'. Conclusion : The results of this study provide to need the education of ASI$^{(R)}$ intervention for accuracy sensory integrative intervention. The occupational therapists need to check the style of intervention.

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF

An Evaluation of ETM+ Data Capability to Provide 'Forest-Shrub land-Range' Map (A Case Study of Neka-Zalemroud Region-Mazandaran-Iran)

  • Latifi Hooman;Olade Djafar;Saroee Saeed;jalilvand Hamid
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.403-406
    • /
    • 2005
  • In order to evaluate the Capability of ETM+ remotely- sensed data to provide 'Forest-shrub land-Rangeland' cover type map in areas near the timberline of northern forests of Iran, the data were analyzed in a portion of nearly 790 ha located in Neka-Zalemroud region. First, ortho-rectification process was used to correct the geometric errors of the image, yielding 0/68 and 0/69 pixels of RMS. error in X and Y axis, respectively. The original and panchromatic bands were fused using PANSHARP Statistical module. The ground truth map was made using 1 ha field plots in a systematic-random sampling grid, and vegetative form of trees, shrubs and rangelands was recorded as a criteria to name the plots. A set of channels including original bands, NDVI and IR/R indices and first components of PCI from visible and infrared bands, was used for classification procedure. Pair-wise divergence through CHNSEL command was used, In order to evaluate the separability of classes and selection of optimal channels. Classification was performed using ML classifier, on both original and fused data sets. Showing the best results of $67\%$ of overall accuracy, and 0/43 of Kappa coefficient in original data set. Due to the results represented above, it's concluded that ETM+ data has an intermediate capability to fulfill the spectral variations of three form- based classes over the study area.

  • PDF

Development of technology in estimating of high-risk driver's behavior (고위험군 운전자의 운행행태 판단기술 개발)

  • Jin, Ju-Hyun;Yoo, Bong-Seok;Lee, Wook-Soo;Kim, Gyu-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.531-538
    • /
    • 2016
  • Driving behaviors such as speeding and illegal u-turn which violate traffic rules are main causes of car accidents, and they can lead to serious accidents. Bus drivers are less aware of dangers of illegal u-turn, and infrastructures such as traffic enforcement equipment and watchmen are deficient. This research aims to develop technology for estimating driving behaviors based on map-matching in order to prevent illegal u-turns. For this research, 23,782 of u-turn permit data and 146,000 of speed limit data are collected nationwide, and an estimation algorithm is built with these data. Then, an application based on android is developed, and finally, tests are conducted to assess the accuracy in data computations and GPS data map-matching, and to extrapolate driving behavior. As a result of the tests, the accuracy results in the map-matching is 86% and the assessment of driving behavior is 83%, while the display of the data output yielded 100% accuracy. Additional research should focus on improvement in accuracy through the development of a robust monitoring system, and study of service scenarios for technology application.