• 제목/요약/키워드: Accuracy Simulation Algorithm

Search Result 819, Processing Time 0.03 seconds

Fault-Tolerant Event Detection in Wireless Sensor Networks using Evidence Theory

  • Liu, Kezhong;Yang, Tian;Ma, Jie;Cheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3965-3982
    • /
    • 2015
  • Event detection is one of the key issues in many wireless sensor network (WSN) applications. The uncertainties that are derived from the instability of sensor node, measurement noise and incomplete sampling would influence the performance of event detection to a large degree. Many of the present researches described the sensor readings with crisp values, which cannot adequately handle the uncertainties inhered in the imprecise sensor readings. In this paper, a fault-tolerant event detection algorithm is proposed based on Dempster-Shafer (D-S) theory (also called evidence theory). Instead of crisp values, all possible states of the event are represented by the Basic Probability Assignment (BPA) functions, with which the output of each sensor node are characterized as weighted evidences. The combination rule was subsequently applied on each sensor node to fuse the evidences gathered from the neighboring nodes to make the final decision on whether the event occurs. Simulation results show that even 20% nodes are faulty, the accuracy of the proposed algorithm is around 80% for event region detection. Moreover, 97% of the error readings have been corrected, and an improved detection capability at the boundary of the event region is gained by 75%. The proposed algorithm can enhance the detection accuracy of the event region even in high error-rate environment, which reflects good reliability and robustness. The proposed algorithm is also applicable to boundary detection as it performs well at the boundary of the event.

Active pulse classification algorithm using convolutional neural networks (콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘)

  • Kim, Geunhwan;Choi, Seung-Ryul;Yoon, Kyung-Sik;Lee, Kyun-Kyung;Lee, Donghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.106-113
    • /
    • 2019
  • In this paper, we propose an algorithm to classify the received active pulse when the active sonar system is operated as a non-cooperative mode. The proposed algorithm uses CNN (Convolutional Neural Networks) which shows good performance in various fields. As an input of CNN, time frequency analysis data which performs STFT (Short Time Fourier Transform) of the received signal is used. The CNN used in this paper consists of two convolution and pulling layers. We designed a database based neural network and a pulse feature based neural network according to the output layer design. To verify the performance of the algorithm, the data of 3110 CW (Continuous Wave) pulses and LFM (Linear Frequency Modulated) pulses received from the actual ocean were processed to construct training data and test data. As a result of simulation, the database based neural network showed 99.9 % accuracy and the feature based neural network showed about 96 % accuracy when allowing 2 pixel error.

A Design of Adaptive Channel Estimate Algorithm for ICS Repeater (ICS 중계기를 위한 적응형 채널추정 알고리듬 설계)

  • Lee, Suk-Hui;Song, Ho-Sup;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • In this thesis, design effective elimination interference algorithm of ICS repeat system for repeater that improve frequency efficiency. Error convergence speed and accuracy of LMS Algorithm are influenced by reference signal. For improve LMS Algorithm, suggest Adaptive channel estimate algorithm. For using channel characteristic, adaptive channel estimate algorithm make reference signal similar interference signal by convolution operation and complement LMS algorithm demerit. For make channel similar piratical channel, apply Jake's Rayleigh multi-path model that random five path with 130Hz Doppler frequency. LMS algorithm and suggested adaptive channel estimate algorithm that have 16 taps apply to ICS repeat system under Rayleigh multi-path channel, so simulate with MATLAB. According to simulate, ICS repeat system with LMS algorithm show -40dB square error convergent after 150 datas iteration and ICS repeat system with adaptive channel estimate algorithm show -80dB square error convergent after 200 datas iteration. Analyze simulation result, suggested adaptive channel estimate algorithm show more three times iteration performance than LMS algorithm, and 40dB accuracy.

An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation

  • Wang, Zhen;Wu, Bin;Bursi, Oreste S.;Xu, Guoshan;Ding, Yong
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1247-1267
    • /
    • 2014
  • Real-Time Hybrid Simulation (RTHS) is a novel approach conceived to evaluate dynamic responses of structures with parts of a structure physically tested and the remainder parts numerically modelled. In RTHS, delay estimation is often a precondition of compensation; nonetheless, system delay may vary during testing. Consequently, it is sometimes necessary to measure delay online. Along these lines, this paper proposes an online delay estimation method using least-squares algorithm based on a simplified physical system model, i.e., a pure delay multiplied by a gain reflecting amplitude errors of physical system control. Advantages and disadvantages of different delay estimation methods based on this simplified model are firstly discussed. Subsequently, it introduces the least-squares algorithm in order to render the estimator based on Taylor series more practical yet effective. As a result, relevant parameter choice results to be quite easy. Finally in order to verify performance of the proposed method, numerical simulations and RTHS with a buckling-restrained brace specimen are carried out. Relevant results show that the proposed technique is endowed with good convergence speed and accuracy, even when measurement noises and amplitude errors of actuator control are present.

Artillery Error Budget Method Using Optimization Algorithm (최적화 알고리즘을 활용한 곡사포의 사격 오차 예측 기법)

  • An, Seil;Ahn, Sangtae;Choi, Sung-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2017
  • In R&D of artillery system, error budget method is used to predict artillery firing error without field firing test. The error budget method for artillery has been consistently developed but apply for practical R&D of the weapon system has been avoided because of lacks of error budget source information. The error budget source is composed of every detailed error components which affect total distance and deflection error of artillery, and most of them are difficult to be calculated or measured. Also with the inaccuracy of source information, simulated error result dose not reflect real firing error. To resolve that problem, an optimization algorithm is adopted to figure out error budget sources from existing filed firing test. The method of finding input parameter estimation which is commonly used in aerodynamics was applied. As an optimization algorithm, CMA-ES is used and presented in the paper. The error budget sources which are figured out by the presented method can be applied to compute ROC of new weapon systems and may contribute to an improvement of accuracy in artillery.

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU (GPU를 이용한 효율적인 비압축성 자유표면유동 해석)

  • Hong, H.E.;Ahn, H.T.;Myung, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.

Generation of Klobuchar Coefficients for Ionospheric Error Simulation

  • Lee, Chang-Moon;Park, Kwan-Dong;Ha, Ji-Hyun;Lee, Sang-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • An ionospheric error simulation is needed for creating precise Global Positioning System (GPS) signal using GPS simulator. In this paper we developed Klobuchar coefficients n ${\alpha}_n$ and ${\beta}_n$ (n = 1, 2, 3, 4) generation algorithms for simulator and verified accuracy of the algorithm. The algorithm extract those Klobuchar coefficients from broadcast (BRDC) messages provided by International GNSS Service during three years from 2006 through 2008 and curve-fit them with sinusoidal and linear functions or constant. The generated coefficients from our developed algorithms are referred to as MODL coefficients, while those coefficients from BRDC messages are named as BRDC coefficients. The maximum correlation coefficient between MODL and BRDC coefficients was found for ${\alpha}_2$ and the value was 0.94. On the other hand, the minimum correlation was 0.64 for the case of ${\alpha}_1$. We estimated vertical total electron content using the Klobuchar model with MODL coefficients, and compared the result with those from the BRDC model and global ionosphere maps. As a result, the maximum RMS was 3.92 and 7.90 TECU, respectively.

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.