• Title/Summary/Keyword: Accuracy

Search Result 34,151, Processing Time 0.071 seconds

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Safety Verification Techniques of Privacy Policy Using GPT (GPT를 활용한 개인정보 처리방침 안전성 검증 기법)

  • Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.

Accurate Measurement of Agatston Score Using kVp-Independent Reconstruction Algorithm for Ultra-High-Pitch Sn150 kVp CT

  • Xi Hu;Xinwei Tao;Yueqiao Zhang;Zhongfeng Niu;Yong Zhang;Thomas Allmendinger;Yu Kuang;Bin Chen
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1777-1785
    • /
    • 2021
  • Objective: To investigate the accuracy of the Agatston score obtained with the ultra-high-pitch (UHP) acquisition mode using tin-filter spectral shaping (Sn150 kVp) and a kVp-independent reconstruction algorithm to reduce the radiation dose. Materials and Methods: This prospective study included 114 patients (mean ± standard deviation, 60.3 ± 9.8 years; 74 male) who underwent a standard 120 kVp scan and an additional UHP Sn150 kVp scan for coronary artery calcification scoring (CACS). These two datasets were reconstructed using a standard reconstruction algorithm (120 kVp + Qr36d, protocol A; Sn150 kVp + Qr36d, protocol B). In addition, the Sn150 kVp dataset was reconstructed using a kVp-independent reconstruction algorithm (Sn150 kVp + Sa36d, protocol C). The Agatston scores for protocols A and B, as well as protocols A and C, were compared. The agreement between the scores was assessed using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. The radiation doses for the 120 kVp and UHP Sn150 kVp acquisition modes were also compared. Results: No significant difference was observed in the Agatston score for protocols A (median, 63.05; interquartile range [IQR], 0-232.28) and C (median, 60.25; IQR, 0-195.20) (p = 0.060). The mean difference in the Agatston score for protocols A and C was relatively small (-7.82) and with the limits of agreement from -65.20 to 49.56 (ICC = 0.997). The Agatston score for protocol B (median, 34.85; IQR, 0-120.73) was significantly underestimated compared with that for protocol A (p < 0.001). The UHP Sn150 kVp mode facilitated an effective radiation dose reduction by approximately 30% (0.58 vs. 0.82 mSv, p < 0.001) from that associated with the standard 120 kVp mode. Conclusion: The Agatston scores for CACS with the UHP Sn150 kVp mode with a kVp-independent reconstruction algorithm and the standard 120 kVp demonstrated excellent agreement with a small mean difference and narrow agreement limits. The UHP Sn150 kVp mode allowed a significant reduction in the radiation dose.

Comparison of One- and Two-Region of Interest Strain Elastography Measurements in the Differential Diagnosis of Breast Masses

  • Hee Jeong Park;Sun Mi Kim;Bo La Yun;Mijung Jang;Bohyoung Kim;Soo Hyun Lee;Hye Shin Ahn
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.431-441
    • /
    • 2020
  • Objective: To compare the diagnostic performance and interobserver variability of strain ratio obtained from one or two regions of interest (ROI) on breast elastography. Materials and Methods: From April to May 2016, 140 breast masses in 140 patients who underwent conventional ultrasonography (US) with strain elastography followed by US-guided biopsy were evaluated. Three experienced breast radiologists reviewed recorded US and elastography images, measured strain ratios, and categorized them according to the American College of Radiology breast imaging reporting and data system lexicon. Strain ratio was obtained using the 1-ROI method (one ROI drawn on the target mass), and the 2-ROI method (one ROI in the target mass and another in reference fat tissue). The diagnostic performance of the three radiologists among datasets and optimal cut-off values for strain ratios were evaluated. Interobserver variability of strain ratio for each ROI method was assessed using intraclass correlation coefficient values, Bland-Altman plots, and coefficients of variation. Results: Compared to US alone, US combined with the strain ratio measured using either ROI method significantly improved specificity, positive predictive value, accuracy, and area under the receiver operating characteristic curve (AUC) (all p values < 0.05). Strain ratio obtained using the 1-ROI method showed higher interobserver agreement between the three radiologists without a significant difference in AUC for differentiating breast cancer when the optimal strain ratio cut-off value was used, compared with the 2-ROI method (AUC: 0.788 vs. 0.783, 0.693 vs. 0.715, and 0.691 vs. 0.686, respectively, all p values > 0.05). Conclusion: Strain ratios obtained using the 1-ROI method showed higher interobserver agreement without a significant difference in AUC, compared to those obtained using the 2-ROI method. Considering that the 1-ROI method can reduce performers' efforts, it could have an important role in improving the diagnostic performance of breast US by enabling consistent management of breast lesions.

Evaluating the Usability of Medical Body Wrap in Whole Body Bone Scan (전신 뼈 검사에서 의료용 신체 고정구의 유용성 평가)

  • Dong-Oh Shim;Woo-Young Jung;Jae-Kwang Ryu;Cheol-Hong Park;Yoon-Jae Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: When performing nuclear medicine examinations, body wraps or plastic supports are used to support and immobilize the patient's upper extremities to prevent patient safety accidents. However, the existing plastic supports compromised patient and staff safety, including finger entrapment and falls. Moreover, the body wrap provided by manufacturers compromised image quality such as upper extremities cutoff during whole body bone scan. Therefore, a new design of body wrap was developed to improve the issue, and this study aims to evaluate the usability of this medical body wrap. Materials and Methods: To evaluate the usability of the newly designed medical body wrap, a quality assessment of whole body bone scan images and a user satisfaction survey were conducted. Adult patients (male:female=129:152, age: 60.3±12.4 years, BMI: 24.0±4.2) aged 16 years or older who underwent a whole body bone scan during two periods: June to July 2022 (before improvement, n=139) and June to July 2023 (after improvement, n=142) were randomly selected for image quality evaluation. Five radiotechnologists visually evaluated the posterior view of the whole body bone image, including the left and right elbow (2 points), arm (2 points), whether the hand is extended (2 points), whether the hand is included (2 points), and the number of visible fingers (10 points), with a total of 18 points, which were converted to 100 points and analyzed for difference before and after improvement using an independent sample t-test. The user satisfaction questionnaire was evaluated using a 5-point Likert scale among 16 radiotechnologists from three general hospitals who experienced the new body wrap. Results: The image quality assessment was 82.0±13.8 before the improvement and 89.3±10.1 after the improvement, an average of 7.3 points higher, with a statistically significant difference (t=5.02, p<0.01). The user satisfaction survey showed an overall satisfaction rating of 4.1±0.8 for ease of use, 3.8±0.7 for scan preparation time, 3.9±0.7 for patient safety, 3.8±1.2 for scan accuracy, and 4.2±0.7 for recommendation (87.5% questionnaire response rate). Conclusion: The developed body wrap showed higher image quality and user satisfaction compared to the old method. Considering these results, it is deemed that the new body wrap may be more useful than existing methods.

Spontaneous Speech Emotion Recognition Based On Spectrogram With Convolutional Neural Network (CNN 기반 스펙트로그램을 이용한 자유발화 음성감정인식)

  • Guiyoung Son;Soonil Kwon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.6
    • /
    • pp.284-290
    • /
    • 2024
  • Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

  • Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1213-1224
    • /
    • 2021
  • Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

CT Angiography-Derived RECHARGE Score Predicts Successful Percutaneous Coronary Intervention in Patients with Chronic Total Occlusion

  • Jiahui Li;Rui Wang;Christian Tesche;U. Joseph Schoepf;Jonathan T. Pannell;Yi He;Rongchong Huang;Yalei Chen;Jianan Li;Xiantao Song
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.697-705
    • /
    • 2021
  • Objective: To investigate the feasibility and the accuracy of the coronary CT angiography (CCTA)-derived Registry of Crossboss and Hybrid procedures in France, the Netherlands, Belgium and United Kingdom (RECHARGE) score (RECHARGECCTA) for the prediction of procedural success and 30-minutes guidewire crossing in percutaneous coronary intervention (PCI) for chronic total occlusion (CTO). Materials and Methods: One hundred and twenty-four consecutive patients (mean age, 54 years; 79% male) with 131 CTO lesions who underwent CCTA before catheter angiography (CA) with CTO-PCI were retrospectively enrolled in this study. The RECHARGECCTA scores were calculated and compared with RECHARGECA and other CTA-based prediction scores, including Multicenter CTO Registry of Japan (J-CTO), CT Registry of CTO Revascularisation (CT-RECTOR), and Korean Multicenter CTO CT Registry (KCCT) scores. Results: The procedural success rate of the CTO-PCI procedures was 72%, and 61% of cases achieved the 30-minutes wire crossing. No significant difference was observed between the RECHARGECCTA score and the RECHARGECA score for procedural success (median 2 vs. median 2, p = 0.084). However, the RECHARGECCTA score was higher than the RECHARGECA score for the 30-minutes wire crossing (median 2 vs. median 1.5, p = 0.001). The areas under the curve (AUCs) of the RECHARGECCTA and RECHARGECA scores for predicting procedural success showed no statistical significance (0.718 vs. 0.757, p = 0.655). The sensitivity, specificity, positive predictive value, and the negative predictive value of the RECHARGECCTA scores of ≤ 2 for predictive procedural success were 78%, 60%, 43%, and 87%, respectively. The RECHARGECCTA score showed a discriminative performance that was comparable to those of the other CTA-based prediction scores (AUC = 0.718 vs. 0.665-0.717, all p > 0.05). Conclusion: The non-invasive RECHARGECCTA score performs better than the invasive determination for the prediction of the 30-minutes wire crossing of CTO-PCI. However, the RECHARGECCTA score may not replace other CTA-based prediction scores for predicting CTO-PCI success.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.