• Title/Summary/Keyword: Accumulated soil carbon

Search Result 41, Processing Time 0.03 seconds

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

A Study on Change of an Accumulated Organi Matter Contents According to Successional Stage on Temperate Grassland (천이계열에 따른 온대초원의 유기물량 축적량 변화)

  • Lee Jae-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.381-386
    • /
    • 2004
  • To develop accurate and predictive global carbon cycle models, it is important to understand the change of accumulated carbon for many ecosystems according to successional stage. In this study, I measured total biomass, litter and soil organic matter contents through an aerial photo and field observation. As a result, accumulated organic matter contents per unit area (kg $m^{-2})$ of three communities composed at grassland were 7.00 kg $m^{-2}$, in Solidago altissima community, 9.18 kg $m^{-2}$, in Imperata cylindrica community, and 12.68 kg $m^{-2}$, in Miscanthus sinensis community, respectively. Accumulated total organic matter contents was high in Miscanthus sinensis community at later succession stage but soil carbon was low. In Miscanthus sinensis community, highly accumulated organic matter contents was resulted from increasing of biomass comparison with that of the other two communities. The pattern of accumulated organic matter contents was changed by changing of the dominant community due to progressing in succession. The accumulated carbon in temperate grassland will be increased with progressing in succession.

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

A Study of Accumulated Ecosystem Carbon in Mt. Deogyusan, Korea (덕유산의 생태계 탄소축적량 산정에 관한 연구)

  • Jeong, Seok-hee;Eom, Ji-young;Jang, Ji-hye;Lee, Jae-ho;Cho, Koo-hyun;Lee, Jae-seok
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.459-467
    • /
    • 2015
  • Understanding of a carbon storage in a regional scale ecosystem is a very important data for predicting change of global carbon cycle. Therefore, the real data collected in the various ecosystems are a very useful for enhancing accuracy of model prediction. We tried to estimate total accumulated ecosystem carbon in Deogyusan National Park (DNP) with naturally well preserved ecosystem. In DNP, vegetations were classified to four main communities with Quercus mongolica community (12,636.9 ha, 54.8%), Quercus variabilis community (2,987.0 ha, 13.0%), Pinus densiflora community (5,758.0 ha, 25.0%), and Quercus serrata community (402.9 ha,1.7%). Biomass and soil carbons were estimated by the biomass allometric equations based on the DBH and carbon contents of litter and soil (0~30 cm) layers collected in 3 plots ($30cm{\times}30cm$) in each community. The biomass and soil carbons were shown as high value as 1,759,000 tC and 7,776,000 tC, respectively, in Quercus mongolia community in DNP area. In Quercus mongolica, Quercus variabilis, Quercus serrata, Pinus densiflora communities, the accumulated ecosystem carbon were shown 9,536,000 tC, 1,405,000 tC, 147,000 tC, 346,000 tC, respectively. Also, the total ecosystem carbon was estimated with 11,434,000 tC in DNP.

Response of Soil CO2 Fluxes to Seasonal Variations in a Grassplot (잔디밭에서 계절 변화에 따른 이산화탄소 플럭스 변동)

  • Kim, Park Sa;Kwon, Byung Hyuk;Kang, Dong Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1131-1142
    • /
    • 2014
  • In this study, the variations of the carbon dioxide fluxes were investigated with soil temperatures in the grassplot and seasonal variations of carbon dioxide concentrations and fluxes were analysed. Soil temperatures, carbon dioxide concentrations and fluxes were measured on the grassplot in Pukyong National University. Field measurements were carried out 25 times from March in 2010 to March in 2011 with nine points on the grassplot. Seasonal variations of carbon dioxide concentrations and fluxes showed an inverse relation. In summer, carbon dioxide concentrations are lower and carbon dioxide fluxes are higher. In winter, carbon dioxide concentrations are higher and carbon dioxide fluxes are lower. On the grassplot, carbon dioxide emission rate increase when the soil temperature is more than $20^{\circ}C$ and the emission rate decrease when the soil temperatures are less than $10^{\circ}C$. When the accumulated rainfall for five days before measurement day is 20~100 mm, it is showed that the more rainfall, the more carbon dioxide emissions. Carbon dioxide emission rate from the grassplot to the upper atmosphere was increased or decreased by the factors such as soil temperature, growth and wither of grass and rainfall. The results of this study showed that the emission of carbon dioxide in the grassplot is dominantly controlled by seasonal factors (especially soil temperature and rainfall).

Characteristics of Accumulated Soil Carbon and Soil Respiration on Vegetation in Namhangang Basin (남한강 수변역식생의 토양탄소축적량과 토양호흡 특성)

  • Jung, Jisun;Yi, Joonseok;Lee, Jaeho;Shim, Kyomoon;Lee, Jaeseok
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • Various ecosystem carry out fundamental function of material circulation and energy flow through interrelationship with many environmental factors. Therefore, it is crucial to scientifically understand the value of nature to deduce correlation between environmental factor and change of ecosystem function. In this study, we determined the accumulated ecosystem carbon and characteristics of soil respiration on grassland vegetation in Namahangang basin in Namhangang Basin. It was found that the rate of soil respiration was highly correlated with the soil temperature in all communities. The measured soil respiration rates were $1,539mgCO_2\;m^{-2}h^{-1}$, $1,200mgCO_2\;m^{-2}h^{-1}$, $1,215mgCO_2\;m^{-2}h^{-1}$ in Miscanthus sacchariflorus, Phragmites japonica, Salix koreensis communities, respectively. Also, carbon quantities accumulated in litter and soil layers were $40.6tCha^{-1}$ (1.9+38.7), $46.9tCha^{-1}$ (43.0+3.9), $31.2tCha^{-1}$ (28.9+2.3) in M. sacchariflorus, P. japonica, S. koreensis communities, respectively.

Studies on microbial population affecting the decomposition of fir litter. (전나무낙엽의 분해에 따른 Microbial population의 변화에 관한 연구)

  • Jang, Nam Gi;Im, Yeong Deuk
    • Korean Journal of Microbiology
    • /
    • v.6 no.3
    • /
    • pp.92-92
    • /
    • 1968
  • 1) The aim of present investigation is to elucidate the relation of the balance of the production and decomposition of the fir litter. in Kwangnung plantation stands. 2) The decay constant, K, of litters was 0. 185 for the fir stand at Kwangnung. 3) The mode for the accumulation of organic carbon ($C_a$) is $c_a$= $610(1-e^{-0.185t})$), and for the decay of organic carbon (C) C = $610(1-e^{-0.185t})$. 4) The time required for the decay of half of the accumulated organic carbon in the fir stand is 3. 74 years and for 99% of elimination 27.02 years. 5) The litters of Abies holophylla killed by heat and washed with alcohol-benzol, with hot water, or with both alcohol-benzol and hot water were incubated after inoculated with suspension of firwood soil. Plate counts were made of fungi and bacteria from time to time. 6) Removal of the alcohol-benzol soluble substance stimulates at the beginning of the decay the growth of fungi and also of bacteria. 7) Removal of the water soluble fraction is detrimental to the growth of fungi in particular. 8) The distribution of soil microbial population is higher in both F and H horizon of the fir plantation soil in Kwangnung. However, the number of soil microorganisms decreases with the depth in forest soil.

Studies on microbial population affecting the decomposition of fir litter. (전나무낙엽의 분해에 따른 Microbial population의 변화에 관한 연구)

  • 장남기;임영득
    • Korean Journal of Microbiology
    • /
    • v.6 no.3
    • /
    • pp.93-99
    • /
    • 1968
  • 1) The aim of present investigation is to elucidate the relation of the balance of the production and decomposition of the fir litter. in Kwangnung plantation stands. 2) The decay constant, K, of litters was 0. 185 for the fir stand at Kwangnung. 3) The mode for the accumulation of organic carbon ($C_a$) is $c_a$= $610(1-e^{-0.185t})$), and for the decay of organic carbon (C) C = $610(1-e^{-0.185t})$. 4) The time required for the decay of half of the accumulated organic carbon in the fir stand is 3. 74 years and for 99% of elimination 27.02 years. 5) The litters of Abies holophylla killed by heat and washed with alcohol-benzol, with hot water, or with both alcohol-benzol and hot water were incubated after inoculated with suspension of firwood soil. Plate counts were made of fungi and bacteria from time to time. 6) Removal of the alcohol-benzol soluble substance stimulates at the beginning of the decay the growth of fungi and also of bacteria. 7) Removal of the water soluble fraction is detrimental to the growth of fungi in particular. 8) The distribution of soil microbial population is higher in both F and H horizon of the fir plantation soil in Kwangnung. However, the number of soil microorganisms decreases with the depth in forest soil.

  • PDF

Global Carbon Cycle Under the IPCC Emissions Scenarios (IPCC 배출시나리오에 따른 지구 규모의 탄소 이동 연구)

  • Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.287-297
    • /
    • 2007
  • Increasing carbon dioxide emissions from fossil fuel use and land-use change has been perturbing the balanced global carbon cycle and changing the carbon distribution among the atmosphere, the terrestrial biosphere, the soil, and the ocean. SGCM(Simple Global Carbon Model) was used to simulate global carbon cycle for the IPCC emissions scenarios, which was six future carbon dioxide emissions from fossil fuel use and land-use change set by IPCC(Intergovernmental Panel on Climate Change). Atmospheric $CO_2$ concentrations for four scenarios were simulated to continuously increase to $600{\sim}1050ppm$ by the year 2100, while those for the other two scenarios to stabilize at $400{\sim}600ppm$. The characteristics of these two $CO_2$-stabilized scenarios are to suppress emissions below $12{\sim}13$ Gt C/yr by tile year 2050 and then to decrease emissions up to 5 Gt C/yr by the year 2100, which is lower than the current emissions of $6.3{\pm}0.4$ Gt C/yr. The amount of carbon in the atmosphere was simulated to continuously increase for four scenarios, while to increase by the year $2050{\sim}2070$ and then decrease by the year 2100 for the other two scenarios which were $CO_2$-stabilized scenarios. Even though the six emission scenarios showed different simulation results, overall patterns were such similar that the amount of carbon was in the terrestrial biosphere to decrease first several decades and then increase, while in the soil and the ocean to continuously increase. The ratio of carbon partitioning to tile atmosphere for the accumulated total emissions was higher for tile emission scenario having higher atmospheric $CO_2$, however that was decreasing as time elapsed. The terrestrial biosphere and the soil showed reverse pattern to the atmosphere.