• Title/Summary/Keyword: Accumulated concentration

Search Result 547, Processing Time 0.027 seconds

Phytoremediation on the Heavy Metal Contaminated Soil by Hyperaccumulators in the Greenhouse (식물경작장에서의 중금속 고축적종 식물을 이용한 중금속 오염토의 정화 연구)

  • Park, Sang-Hean;Choi, Sang-Il;Park, Jong-Bu;Han, Ha-Kyu;Bae, Sei-Dal;Sung, Il-Jong;Park, Eung-Ryeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This study was performed to evaluate the remediation efficiency by Helianthus annuus, Brassica juncea and Brassica campestris on the soil contaminated with nickel, zinc and lead, respectively. The growth rates fell down under 60% in the condition of over 700 mg/kg of zinc for Brassica campestris, 300 mg/kg of lead for Helianthus annuus, and 150 mg/kg of nickel for Brassica juncea on the basis of heavy metal concentration in the soil, because of its toxicity. Also, the hyperaccumulators showed the maximum heavy metal contents in their biomass after 90 days of cultivation. The accumulated heavy metal content per kilogram of hyperaccumulator was 0.65 mg of nickel in Brassica juncea, 0.14 mg of zinc in Brassica campestris, and 0.06 mg of lead in Helianthus annuus, respectively. Additionally, 73.2% of nickel accumulated in Brassica juncea and 95.1% of zinc accumulated in Brassica campestris were concentrated in the upper site of crop like stem and leaves. However, in the case of Helianthus annuus, 83.7% of lead was accumulated in the root.

Studies on the aeration improvement of inner bottle(850ml) culture system during the mycelial culture of Pleurotus ostreatus (느타리의 균사 배양 중 배양기 내부 통기성 개선)

  • Yoo, Young-Jin;Shim, Kyu-Kwang;Koo, Chang-Duck;Kim, Myung-Koon
    • Journal of Mushroom
    • /
    • v.10 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • The plastic culture bottle cap types and accumulated concentration of carbon dioxide, media humidity in the process of medium culture, chitin content and yield were observed in Pleurotus ostreatus 850ml bottle in Iksan, Jeollabuk-do, Korea, during 2011. The concentration of carbon dioxide in the process of medium culture was the highest after 8~9 days cultivation irrespective of cap sizes and types. The accumulated concentration of carbon dioxide in size cap of 29~41mm was 6.5~4.0% in the upper-under perforation hole of cap and 9.0~6.5% in the under perforation hole of cap. The upper-under 23~33mm perforation hole and under 29mm perforation hole of caps in the 850ml bottle were best condition for cultivation of mushroom and increased fruit body, 15.8~21.2% and 20%, respectively. However, the upper-under & under 41mm perforation hole of fruit body were decreased 60.7% and 23.6%, respectively. Also it was weak, lose vitality and the lower of biologically activity substance because the upper medium humidity was too dry.

Evaluation of Rhizofiltration for Uranium Removal with Calculation of the Removal Capacity of Raphanus sativus L. (무순(Raphanus sativus L.)의 제거능 계산에 의한 뿌리여과법의 우라늄 제거 가능성 평가)

  • Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.43-52
    • /
    • 2015
  • The uranium removal capacity of radish sprouts (Raphanus sativus L.) in groundwater was calculated on the basis of the amount of uranium accumulated in the radish sprouts rather than the concentration in solution, of which process was very limited in previous studies. Continuous rhizofiltration clean-up system was designed to investigate the feasibility of radish sprouts, applying for uranium contaminated groundwater (U concentration: 110 μg/L) taken at Bugogdong, Busan. Six acrylic boxes (10 cm × 30 cm × 10 cm) were connected in a direct series for the continuous rhizofiltration system and 200 g of radish sprouts cultivars was placed in each box. The groundwater was flushed through the system for 48 hours at the constant rate of 5 mL/min. The rhizofiltration system was operated in the phytotron, of which conditions were at 25℃ temperature, 70% of relative humidity, 4,000 Lux illumination (16 hours/day) and 600 mg/L of CO2 concentration. While 14.4 L of contaminated groundwater was treated, the uranium removal efficiency of the radish sprouts (1,200 g in wet weight) was 77.2% and their removal capacities ranged at 152.1 μg/g-239.7 μg/g (the average: 210.8 μg/g), suggesting that the radish sprouts belong to the group of hyper-accumulation species. After the experiment, the sum of U amounts accumulated in radish sprouts and remained in groundwater was 1,472.2 μg and the uranium recovery ratio of this rhizofiltration experiment was 92.9%. From the results, it was investigated that the radish sprouts can remove large amounts of uranium from contaminated groundwater in a short time (few days) because the fast growth rate and the high U accumulation adsorption capacity.

Studies on the Bacterial Production of L-Glutamate from Acetate Part II. Cultural Conditon (초산을 이용한 글루타민산의 발효생산에 관한 연구 (제2보) 글루타민산 생성을 위한 발효조건)

  • 하덕모;노완섭;서동하
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.3
    • /
    • pp.141-147
    • /
    • 1974
  • The cultural conditions for L-glutamate production were investigated using Brevibacterium flavum nov. sp. D2209B, the most productive strain among 5 strains reported in preceeding paper. A temperature of 3$0^{\circ}C$ and a medium volume of 30 ml per 500-flask were selected as standard culture conditions. And the following results were obtained. 1. When the concentration of acetate in the medium was below 30 g per litre, the maximum amount of L-glutamate was accumulated. 2. KH$_2$PO$_4$, MgSO$_4$, FeCI$_3$ and MnCI$_2$ were required for the L-glutamate poduction, but the concentration of those inorganic salts little effected. 3. Signifcant amount of L-glutamate was accutnulated in the limited biotin concentration less than 0.3 ug per litre. 4. The addition of malic acid or succinic acid enhanced the accumulation. 5. The L-glutamate accumulation was related to the incubation time of seed; the amount of L-glutamate accumulated was maximum by inoculating 16-20 hour incubated seed. 6. In the medium containing sufficient amount of biotin for growth, L-glutamate accumulation was stimulated by the addition of penicillin at appropreate time during incubation.

  • PDF

N Uptake and Assimilation of Barley Seedlings as Affected by N Availability, Temperature and Water Potential (질소량, 온도, 수분포텐셜 조절에 따른 보리유묘의 질소흡수 및 체내동화)

  • Kim, Sok-Dong;Kwon, Yong-Woong;Soh, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.458-465
    • /
    • 1993
  • Water culture experiments were carried out to elucidate the effects of N availability, temperature and water potential of culture solution on the uptake and assimilation of N and dry matter accumulation by barley seedlings. N assimilation and dry matter accumulation at 3 to 4 leaves stage in barley plants were maximized at about 3.4 % of N concentration in leaf. N assimilation by barley plants increased with increase of nitrate concentration up to 80ppm in the solution. Over this level nitrate began to accumulated in the leaves and stems proportionally to the N availability in culture solution. Nitrate reductase activity increased in parallel with the increase in the concentration of reduced N in leaves. N uptake by barley plants decreased markedly when water potential reduced below -2 bar or when temperature dropped below 5$^{\circ}C$. These results suggest that the basal application rate of N, 60kg per hectare, for the barley crop needs to be re-examined under the concept of N use efficiency with taking into consideration of temperature and soil N availability because about a half of N accumulated in the leaves of barley plant before wintering is known to be lost by winter killing of above-ground part of the plant.

  • PDF

A study on the mechanism for reduction of lead-induced toxicity in nervous system by aloe vera (Aloe vera의 연 유도성 신경계 독성 저감 기전에 관한 연구)

  • 정명규;곽영규
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.8-16
    • /
    • 1996
  • Effects of water extract of aloe vera on lead-induced neurotoxicity were investigated in sciatic nerve isolated from rat. The mechanism on toxicity reduction by measuring activities of axonal enzymes, metabolism of myo-inositol in nerve, lead concentration in several organs and so on were further examimed. In the lead-treated rats, the transport rate of axonal enzyme, such as acetyl cholinesterase and choline acetyltransferase, was reduced by from 50% to 30% respectively. Reduction in myo-inositol concentration and $Na^+/K^+$ ATPase activity were also observed in sciatic nerve from lead-treated rat. However, the aloe extract administration significantly eliminated the impairment and maintained myo-inositol concentration to about 85% of normal level. Also aloe extract promoted the excretion rate of lead which is accumulated in blood, sciatic nerve and kidney. These results suggest that lead-induced neurotoxicity was significantly reduced by administration of aloe extract and the mechanism might be partly increase in kidney excretion rate of lead and parity normalization of $Na^+/K^+$ ATPase activity which is critical factor in order to keep nerve maintaining normal myo-inositol level.

  • PDF

Differential Pulse Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol (Nafion-DTPA-Glycerol이 수식된 유리탄소전극을 사용한 미분펄스 전압전류법에 의한 구리(II)이온의 측정)

  • 박찬주;박은희;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • A glassy carbon electrode(GCE) modified with nafion-DTPA (diethylene triamine-pentaacetic acid)-glycerol is used for the highly selective and sensitive determination of a trace amount of Cu(II). Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu(II), are optimized. The Copper(II) is accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface is characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry(DPV). The electrochemical response is evaluated with respect to concentration of modifier, pH and preconcentration time, quiet time, copper(II) concentration, and other variables. A linear range is obtained in the concentration range 1.0${\times}$10$^{-8}$ M-1.0${\times}$10$^{-6}$ MCu(II) with 7 min preconcentration time. The detection limit(3s) is as low as 2.36${\times}$10$^{-8}$ M (1.50 ppb).

Production of Poly-$\beta$-hydroxybutyrate from Methanol by Fed-batch Cultivation of methylobacterium sp. GL-10 (Methylobacterium sp. GL-10의 유가식 배양에 의한 Methanol로 부터 Poly-$\beta$-hydroxybutyrate의 생산)

  • 이호재;이용현
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 1991
  • The production of poly-$\beta$-hydroxybutyrate(PHB) from methanol by batch and fed-batch cultivations of Methylobacterium sp. GL-10 was studied. PHB accumulation was stimulated by the nutrients deficiency including, NH4+, SO42-, and K+. The nitrogen deficiency was the most critical factor for PHB accumulation. In batch cultivation, the maximum cell concentration and PHB content were 1.86g/l and 0.62g/l, respectively, with 1.0%(v/v) of methanol and 0.5g/1 of ammonium sulfate. The mass doubling time of Methylobacterum sp. GL-10 was in the range of 4-5 hrs. The cell growth and PHB accumulation were severely inhibited at the methanol concentration over than 2% (v/v). To overcome methanol Inhibition, constant feeding and intermittent feedillg fed-batch cultivations were adopted, using C/N molar ratio as a control factor. In constant feeding fed-batch process, cell concentration was increased up to 2.67g/1, and PHB yield was enhanced from 0.33 of batch culture to 0.53. The relatively low cell concentration was caused by methanol accumulated in culture broth at late growth phase. To prevent methanol accumulation and to maximize PHB production, DO-state intermittent fed-batch cultivation was attempted. The cell and PHB concentration was reached up to 4.55g/1 and 1.80g/1, respectively. It was possible to maintain methanol concentration low and also to feed nutrient of desired C/N molar ratio.

  • PDF

Evaluation of accumulated particulate matter on roadside tree leaves and its metal content (가로수 수종별 잎의 미세먼지 축적량 및 금속 원소 함량 평가)

  • Kwon, Seon-Ju;Cha, Seung-Ju;Lee, Joo-Kyung;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.161-168
    • /
    • 2020
  • It is known that different plant species have ability to deposit different amounts of particulate matter (PM) on their leaves and plants can absorb heavy metals in PM through their leaves. Heavy metals in PM can have toxic effect on human body and plants. Therefore, PM on different roadside trees at Chungbuk national University including box tree (Buxus koreana), yew (Taxus cuspidate), royal azalea (Rhododendron yedoense), and retusa fringetree (Chionanthus retusa) was quantified based on particle size (PM>10 and PM2.5-10). The metal concentration in PM accumulated on leaves was analyzed using inductively coupled plasma-mass spectroscopy. In this study, the mass of PM>10 deposited on the surface of the tree leaves ranged from 6.11 to 32.7 ㎍/㎠, while the mass of PM2.5-10 ranged from 0 to 14.8 ㎍/㎠. The royal azaleas with grooves and hair on the leaf surface retained PM particles for longer time, while the yews and box trees with wax on leaf surfaces accumulated more PM. The PM contained elements in crustal material such as Al, Ca, Mg, and Fe and heavy metals including Cu, Pb and Zn. The concentration of elements in crustal material was higher in the coarser size, while heavy metal concentration was relatively higher in the finer size fraction. The Mn, Cd, Cu, Ni, Pb, and Zn concentrations of leaves and PM2.5-10 were significantly correlated indicating that PM was taken up through tree leaves.

Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II) (수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향)

  • Kim, Byeong-Ju;Lee, Chan-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.