• 제목/요약/키워드: Accretion

검색결과 427건 처리시간 0.029초

Photometric Observations of Eccentric Accretion in Algol-type Binary Stars

  • Reed, Phillip A.
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.141-143
    • /
    • 2012
  • Some Algol-type interacting binary stars exhibit strange photometric variations that can be phase-dependent and/or secular. This paper discusses the possibility of explaining these observed variations as resulting from an accretion structure eclipsing one or both of the stars. Some previous studies are reviewed and suggestions for future work are made, including the prospective of incorporating data from the Kepler Observatory.

THE COLLISION EFFECTS OF THE PARTICLES IN THE ACCRETION DISK

  • Yoo, K.H.
    • 천문학논총
    • /
    • 제11권1호
    • /
    • pp.125-137
    • /
    • 1996
  • The collision of two particles in the accretion disk may lead to be a mechanism of heat generation. By using hydrodynamic equations, the mean free path, the collision frequency and the deflection angle due to the collision of the particles are derived as a function of the mass accretion rate. The mean free path seems to be a smaller fraction compared to the dimension parameter of the system. The radiative flux in the disk is obtained under the influence of the collision of the particles.

  • PDF

INTRODUCTION TO THE PHYSICS OF ACCRETION DISK

  • Wheeler, J. Craig
    • 천문학논총
    • /
    • 제8권1호
    • /
    • pp.163-168
    • /
    • 1993
  • At intermediate mass transfer rates, accretion disks in binary star systems undergo a thermally-driven limit cycle instability. This instability leads to outburst episodes when the disk is bright and the flow through the disk is rapid separated by long intervals when the disk is dim and the flow through it is low. This intrinsic outburst mechanism can help to understand a wide range of astrophysical phenomena from dwarf novae to soft X -ray transients involving white dwarf, neutron star, and black holes. and to a deeper understanding of the mechanism of angular transport and viscosity in the accretion disk.

  • PDF

THE GROWTH OF A PRIMORDIAL BLACK HOLE AT THE CENTER OF A STAR

  • Park, Seok-Jae
    • 천문학회지
    • /
    • 제23권2호
    • /
    • pp.116-121
    • /
    • 1990
  • It has been suggested that there could be a large number of primordial black holes which were formed in the early universe. We analyze the growth of such a primordial black hole following two different accretion rates - the Eddington accretion rate and the Bondi accretion rate - at the center of a host star like the sun. We find that a primordial black hole with M < ${\sim}10^{17}\;g$ cannot substantially grow in any case throughout the lifetime of a host star. If M > ${\sim}10^{17}\;g$, the evolution of a host star depends entirely on the mode of accretion, but it ends as a black hole in either case. Since more stars may have primordial black holes at the center of a galaxy this may result in a cluster of such black holes, and the cluster may eventually collapse to produce a single supermassive black hole.

  • PDF

Accretion Flow and Disparate Profiles of Raman Scattered O $VI{\lambda}{\lambda}1032$ and 1038 in the Symbiotic Star V1016 Cygni

  • Heo, Jeong-Eun;Lee, Hee-Won
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.88.2-88.2
    • /
    • 2014
  • The symbiotic star V1016 Cygni shows the Raman scattered O VI features at $6825{\AA}$ and $7088{\AA}$. These are formed through inelastic scattering of O VI 1032, 1038 by atomic hydrogen. They exhibit characteristic double peak profiles with a stronger red peak, which is explained by the accretion flow around the white dwarf. In addition, the two Raman features have different profiles in such a way that the blue part of the Raman 7088 feature is relatively more suppressed than the Raman 6825 counterpart. We produced the Doppler maps of the two Raman features in order to trace the origin of the disparate profiles. We conclude that the profile difference is due to various O VI 1032 to O VI 1038 flux ratios in the accretion region. This is consistent with the picture where the slow stellar wind from the giant interacts with the accretion flow around the white dwarf.

  • PDF

MAGNETIC FIELDS IN STARS AND DISKS

  • VISHNIAC ETHAN T.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.201-204
    • /
    • 1996
  • Magnetic fields are thought to playa role in a wide variety of important astrophysical processes, from angular momentum transport and jet formation in accretion disks to corona formation in stars. Unfortunately, the dynamics of magnetic fields in astrophysical plasmas are extremely complicated, and the success of current theoretical models and computer simulations seems to be inversely correlated with the amount of observational detail available to us. Here I will discuss some of the more striking conflicts between numerical simulations and observations, and present an explanation for them based on an important dynamical process which is not adequately modeled in current numerical simulations. These processes will lead to the formation of flux tubes in stars and accretion disks, in accordance with observations. I will discuss some of the implications of flux tube formation for stellar and accretion disk dynamos.

  • PDF

KC-100 항공기 주날개의 결빙에 의한 공력 영향성 연구 (ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF THE MAIN WING SECTION OF KC-100 AIRCRAFT)

  • 이창훈;신성민;정성기;명노신;조태한;정재홍;정훈화
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.464-467
    • /
    • 2010
  • Ice accretion on aircraft surface in icing condition induces external shape changes that may result in a hazard factor for aircraft safety. In case of aircraft main wing with high lift equipment, ice accretion is observed around leading edge and flap. During the design phase, location of ice accretion and associated aerodynamic characteristics must be investigated. In this study, icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft are investigated using an Eulerian-based FENSAP-ICE code in various icing conditions.

  • PDF

Effect of rotation on the evolution of Population III protostars

  • Lee, Hunchul;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.81.2-81.2
    • /
    • 2014
  • To figure out the effect of rotation on the final mass of Pop III stars, 1D stellar evolution simulations of the evolution of mass-accreting protostars are performed, with zero metalicity and high constant mass accretion rates. The protostar reaches the Keplerian rotation very soon after the onset of mass accretion, but it may continue mass accretion via angular momentum transport induced by viscous stress or magnetic field. However, as the accreting star evolves, the envelope expands rapidly when the total mass reaches $5{\sim}6M_{\odot}$ and the corresponding Eddington factor sharply increases. Strong radiative pressure with rotation imposes different criteria for breakup at the stellar surface, and the so-called 'critical rotation (${\Omega}{\Gamma}$-limit)' is reached. As a result mass accretion rate has to be significantly lowered. This implies that characteristic masses of Pop III stars would be significantly lowered than the previous expectation.

  • PDF

Polarization of Double Peaked Active Galactic Nuclei

  • 이희원
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • A small number of active galactic nuclei are known to exhibit prominent double peak emission profiles indicating the presence of a relativistic accretion disk model. Using a Monte Carlo technique, we compute the linear polarization of a double peaked broad emission line. A Keplerian accretion disk is adopted for the double peak emission line region and the Schwarzschild geometry is assumed in the emission region. Far from the accretion disk where flat Minkowski geometry is appropriate, we place a scattering region in the shape of a spherical shell sliced. We generate a line photon in the accretion disk in an arbitraray direction in the local rest frame and follow the geodesic of the photon until it hits the scattering region. The profile of the polarized flux is mainly determined by the relative location of the scattering region with respect to the emission source. When the scattering region is in the polar direction, the linear degree of polarization also shows a double peak structure. Under a favorable condition we show that up to 1% of linear degree of polarization may be obtained.

  • PDF

IRON LINE PROFILES FROM RELATIVISTIC ELLIPTICAL ACCRETION DISKS

  • CHANG HEON-YOUNG;CHOI CHUL-SUNG
    • 천문학회지
    • /
    • 제35권3호
    • /
    • pp.123-130
    • /
    • 2002
  • An elliptical accretion disk may be formed by tidally disrupted debris of a flying-by star in an active galactic nucleus (AGN) or by tidal perturbation due to a companion in a binary black hole system. We investigate the iron K$\alpha$ line profiles expecting from a geometrically thin, relativistic, elliptical disk in terms of model parameters, and find that a broad and skewed line profile can be reproduced well. Its shape is variable to the model parameters, such as, the emissivity power-law index, the ellipticity of the disk, and the major axis orientation of the elliptical accretion disk. We suggest that our results may be useful to search for such an elliptical disk and consequently the tidal disruption event.