• Title/Summary/Keyword: Accidental explosions

Search Result 13, Processing Time 0.021 seconds

Reinforced concrete wall as protection against accidental explosions in the petrochemical industry

  • Ambrosini, Daniel;Luccioni, Bibiana Maria
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.213-233
    • /
    • 2009
  • In this paper the study of a reinforced concrete wall used as protection against accidental explosions in the petrochemical industry is presented. Many alternatives of accidental scenarios and sizes of the wall are analyzed and discussed. Two main types of events are considered, both related to vessel bursts: Pressure vessel bursts and BLEVE. The liberated energy from the explosion was calculated following procedures firmly established in the practice and the effects over the structures and the reinforced concrete wall were calculated by using a CFD tool. The results obtained show that the designed wall reduces the values of the peak overpressure and impulse and, as a result, the damage levels to be expected. It was also proved that a reinforced concrete wall can withstand the blast load for the considered events and levels of pressure and impulse, with minor damage and protect the buildings.

Damage Contribution Rate Analysis by Accidental Tunnel Explosion at a Multi-layered Room and Pillar Mine (우발적 갱도폭발에 따른 다층 주방식 채광광산 구조요인별 피해 기여도 분석)

  • Ko, Young-Hun;Yang, Hyung-Sik;Kim, Seung-Jun
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, parametric studies are conducted to evaluate the contribute effect of multi layered room and pillar mine structures by underground accidental explosions. Influence of PPV(Peak Particle Velocity) obtained from large explosion at a multi layered room and pillar mine was numerically simulated by using AUTODYN. Parameters for contribution rate Analysis was analyzed by the robust design method. Orthogonal array is $L_9(3^4)$, which was adopted in this study, the parameters were pillar height, pillar width, mine span and sill pillar of 3 levels. Results of analysis showed that bottom mine of vertical direction from explosion point are most affected by pillar height, followed by sill pillar thickness, mine span and pillar width. Parameters affecting adjacent mine of horizontal direction from explosion are in the order of pillar width, mine span, pillar height and sill pillar thickness.

Progressive collapse of reinforced concrete structures

  • Yagob, O.;Galal, K.;Naumoski, N.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.771-786
    • /
    • 2009
  • In the past few decades, effects of natural hazards, such as earthquakes and wind, on existing structures have attracted the attention of researchers and designers. More recently, however, the phenomenon of progressive collapse is becoming more recognized in the field of structural engineering. In practice, the phenomenon can result from a number of abnormal loading events, such as bomb explosions, car bombs, accidental fires, accidental blast loadings, natural hazards, faulty design and construction practices, and premeditated terrorist acts. Progressive collapse can result not only in disproportionate structural failure, but also disproportionate loss of life and injuries. This paper provides an up-to-date comprehensive review of this phenomenon and its momentousness in structural engineering communities. The literature reveals that although the phenomenon of progressive collapse of buildings is receiving considerable attention in the professional engineering community, more research work is still needed in this field to develop a new methodology for efficient and inexpensive design to better protect buildings against progressive collapse.

Recommended Evacuation Distance for Offsite Risk Assessment of Ammonia Release Scenarios (냉동, 냉장 시스템에서 NH3 누출 사고 시 장외영향평가를 위한 피해범위 및 대피거리 산정에 관한 연구)

  • Park, Sangwook;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • An accident of an ammonia tank pipeline at a storage plant resulted in one death and three injuries in 2014. Many accidents including toxic gas releases and explosions occur in the freezing and refrigerating systems using ammonia. Especially, the consequence can be substantial due to that the large amount of ammonia is usually being used in the refrigeration systems. In this study, offsite consequence analysis has been investigated when ammonia leaks outdoors from large storages. Both flammable and toxic effects are under consideration to calculate the affected area using simulation programs for consequence analysis. ERPG-2 concentration (150 ppm) has been selected to calculate the evacuation distance out of various release scenarios for their dispersions in day or night. For offsite residential, the impact area by flammability is much smaller than that by toxicity. The methodology consists of two steps as followings; 1. Calculation for discharge rates of accidental release scenarios. 2. Dispersion simulation using the discharge rate for different conditions. This proactive prediction for accidental releases of ammonia would help emergency teams act as quick as they can.

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Structural response of concrete gravity dams under blast loads

  • Sevim, Baris;Toy, Ahmet Tugrul
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete dams are important structures due to retaining amount of water on their reservoir. So such kind of structures have to be designed against static and dynamic loads. Especially considering on critical importance against blasting threats and environmental safety, dams have to be examined according to the blast loads. This paper aims to investigate structural response of concrete gravity dams under blast loads. For the purpose Sarıyar Concrete Gravity Dam in Turkey is selected for numerical application with its 85 m of reservoir height (H), 255 m of reservoir length (3H), 72 m of bottom and 7 m of top widths. In the study, firstly 3D finite element model of the dam is constituted using ANSYS Workbench software considering dam-reservoir-foundation interaction and a hydrostatic analysis is performed without blast loads. Then, nearly 13 tons TNT explosive are considered 20 m away from downstream of the dam and this is modeled using ANSYS AUTODYN software. After that explicit analyses are performed through 40 milliseconds. Lastly peak pressures obtained from analyses are compared to empirical equations in the literature and UFC 3-340-02 standard which provide unified facilities criteria for structures to resist the effects of accidental explosions. Also analyses' results such as displacements, stresses and strains obtained from both hydrostatic and blasting analysis models are compared to each other. It is highlighted from the study that blasting analysis model has more effective than the only hydrostatic analysis model. So it is highlighted from the study that the design of dams should be included the blast loads.

Fire Resistance Characteristics of Firewall Structure Associated with Impact Damage Induced by Explosion

  • Hye Rim Cho;Jeong Hwa Yoo;Jung Kwan Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.99-110
    • /
    • 2023
  • When a fire accident accompanied by an explosion occurs, the surrounding firewalls are affected by impact and thermal loads. Damaged firewalls due to accidental loads may not fully perform their essential function. Therefore, this paper proposes an advanced methodology for evaluating the fire resistance performance of firewalls damaged by explosions. The fragments were assumed to be scattered, and fire occurred as a vehicle exploded in a large compartment of a roll-on/roll-off (RO-RO) vessel. The impact velocity of the fragments was calculated based on the TNT equivalent mass corresponding to the explosion pressure. Damage and thermal-structural response analyses of the firewall were performed using Ansys LS-DYNA code. The fire resistance reduction was analyzed in terms of the temperature difference between fire-exposed and unexposed surfaces, temperature increase rate, and reference temperature arrival time. The degree of damage and the fire resistance performance of the firewalls varied significantly depending on impact loads. When naval ships and RO-RO vessels that carry various explosive substances are designed, it is reasonable to predict that the fire resistance performance will be degraded according to the explosion characteristics of the cargo.

Estimating the Area of Damage Caused by Gas Pipeline Leakage in Subway Construction Zones (지하철역 공사지역 도시가스 배관 누출로 인한 피해면적 산정)

  • Yang, Yong-Ho;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.419-427
    • /
    • 2024
  • This study assessed the potential impact of gas leakage resulting from accidental damage to buried urban gas pipelines during perforating operation near subway construction sites. The risk of explosions due to ignition sources such as static electricity, arising from gas infiltrating the subway construction site through storm sewers and sewage pipes, was evaluated using the ALOHA program. The results of the threat zone calculation, which input various parameters of urban gas pipelines such as length, diameter, and pressure, indicated that the flammable area within the vapor cloud extended from 1.2 to 1.4 km (red zone), the blast area ranged from 0.8 to 1.0 km (yellow zone), and the jet fire extended from 45 to 61 m (red zone). This study demonstrates that within the flammable area of the vapor cloud, a specific combination of concentration and conditions can increase flammability. The blast area may experience explosions with a pressure of 1.0 psi, sufficient to break glass windows. In the event of a jet fire, high temperatures and intense radiant heat exposure lead to rapid fire propagation in densely populated areas, posing a high risk of casualties. The findings are presented in terms of the sphere of influence and threat zone ranges.

Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface (3차원 파단 변형률 평면을 이용한 비보강 원판의 펀칭 파단 시뮬레이션)

  • Park, Sung-Ju;Lee, Kangsu;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.474-483
    • /
    • 2016
  • Accidental events such as collisions, groundings, and hydrocarbon explosions in marine structures can cause catastrophic damage. Thus, it is extremely important to predict the extent of such damage, which determines the total amount of oil spills and the residual hull girder strength. Punching fracture tests were conducted by Choung (2009b), where various sizes of indenters and circular unstiffened steel plates with different thicknesses were used to quasi-statically realize damage extents. A three-dimensional fracture strain surface was developed based on a reference (Choung et al., 2015b), where the average stress triaxiality and average normalized Lode angle were used as the parameters governing the fracture of ductile steels. In this study, new numerical analyses were performed using very fine axisymmetric elements in combination with an Abaqus user-subroutine to implement the three-dimensional fracture strain surface. Conventional numerical analyses were also conducted for the tests to identify the best fit fracture strain values by changing the fracture strains. Based on the phenomenon of the average normalized Lode angle starting out positive and then becoming slightly negative, it was inferred that the shear stress primarily dominates in determining the fractures locations, with a partial contribution from the compressive stress. It should be stated that the three-dimensional fracture surface effectively predicted at least the shear stress-dominant fracture behavior of a mild steel.

A Study on the Safety Distance of Underground Structures in Asepct of Ground Vibration Velocity due to Explosions (지중 구조물의 지반 진동 안전거리 설정에 관한 현장적용연구)

  • Park, Sangjin;Kang, Jiwon;Park, Young Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • The necessity to consider stability of underground structures constructed below or adjacent ammunition depots has been increased since the expansion of urban area and construction of infrastructure. However, there are a few studies on influence of accidental explosion on underground structures. In this study, the process of assessing the stability of underground structures is suggested and its applicability is verified through the case study. AUTODYN and SPACECLAIM are used to execute the structure and geotechnical modelling, and explosion effect is simulated and vibration velocities are calculated. According to the result of this case study, it is concluded that underground structure constructed 70m below ground might be rarely influenced by the simulated explosion. The process used in this study could be used to design the underground ammunition complex and analyse the stability of underground facilities being influenced by periodical vibration.