• Title/Summary/Keyword: Accessions

Search Result 483, Processing Time 0.021 seconds

Genetic Analysis of Seed Size in Watermelon (수박 종자크기에 대한 유전분석)

  • Kim, Yong-Jae;Yang, Tae-Jin;Park, Young-Hoon;Lee, Yong-Jik;Kang, Sun-Cheol;Kim, Yong-Kwon;Cho, Jeoung-Lai
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.412-419
    • /
    • 2009
  • In order to study the inheritance of watermelon seed size, we used six watermelon lines of different seed sizes as parental lines. Six lines include three accessions, 'PI525088' with giant seed (GS), 'Charleston Gray' with big seed (BS), and 'NT' with normal medium size seed (NS), and three near isogenic lines, 'NTss' with small seed (SS), 'NTms' with micro seed (MS) and 'NTts' with tomato seed size (TS) bred by crosses between accession 'NT' of normal seed size and accession 'TDR' of the smallest seed size,. We inspected $F_1$, $F_2$, $BC_1F_1$ (P1), $BC_1F_1$ (P2) populations from the crosses between the adjacent seed size materials like $GS{\times}BS$, $BS{\times}NS$, $NS{\times}SS$, and $MS{\times}TS$, and two crosses between parental lines showing relatively big difference in seed size such as $GS{\times}TS$ and $NS{\times}TS$. Partial single dominant inheritance patterns were observed between $GS{\times}BS$, $NS{\times}SS$, and $MS{\times}TS$ and inheritance patterns based on two genes or more than two genes were speculated between $BS{\times}NS$. A very wide segregation range was observed from the population of $GS{\times}TS$ indicating many quantitative genes involved in the seed sizes. Overall, we speculated that more than six genes are involved in between the biggest and smallest seed size watermelon and three major genes between the normal seed size and the smallest seed size watermelon.

Feed Value of Pearl Millet [Pennisetum americanum(L.) Leeke] Grown as a New Forage Crop (진주조의 사료적 가치)

  • Park, Keun-Yong;Choi, Byung-Han;Kang, Young-Kil;Moon, Hyeon-Gui;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 1988
  • Pearl millet has been detected as a promising new forage crop of excellent quality and productivity since 1985. Its green fodder yields were 10.7 to 12.8 tons per hectare in average of 26 accessions in Suwon, 1985. The yield level was much higher than those of Italian and pro so millets and com. Com was better than Italian and proso millets, and proso millet was better than Italian millet for a green fodder crop. Suwon 1 pearl millet hybrid was the best of the 13 hybrids examined in Suwon, 1986 being 149 tons per hectare of three times cut green fodder yields. The pearl millet hybrid was higher in green fodder yield than com and sorghum/sudan grass hybrids. Leaf area index was 32.4 for the three times cut pearl millet, while 5.8 for the one time cut corn, and 20.8 for the three times cut sorghum/sudan grass. Crude protein content was 16.3 percent for pearl millet being six to five percent higher than corn and sorghum/sudan grass, 11.8 percent for the one time cut at maturity and 16.1 percent for four times cut being higher than corn and sorghum/sudan grass. Crude fat content was 3. percent for pear 1 millet grain being some what higher than corn and sorghum/sudan grass and 1.3-1.4 percent for green fodder crop. Crude fiber content in grain was 1.9 percent for pearl millet 2.6 percent for corn, and 4.3 percent for sorghum/sudan grass. Crude fiber content in pearl millet plant was 24.4 to 26.8 percent, Crude ash content was 2.4 percent in grain and 10.8 to 11.6 percent in the plants of pearl millet hybrid. In vitro digestibility of grain was 93.7 percent for pearl millet, 95.4 percent for corn, and 55.8 percent for sorghum/sudan grass. The digestibility of whole plant was 57.6 to 63.4 percent for pearl millet, 46.3 percent for corn, and 47.3 to 57.6 percent for sorghum/sudan grass. Heavier nitrogen fertilizer applications increased green fodder yields, protein content and digestibility, but reduced fat and ash content of pearl millet inbred line T 186.

  • PDF

Expression of Organogenesis-related Genes and Analysis of Genetic Stability by ISSR Markers of Regenerants Derived from the Process of in vitro Organogenesis in Japanese Blood Grass (Imperata cylindrica 'Rubra') (기내배양 홍띠 단계별 재분화체의 기관분화 관련 유전자 발현과 ISSR에 기반한 유전적 안정성 분석)

  • Ye-Jin Lee;In-Jin Kang;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.496-507
    • /
    • 2023
  • The in vitro organogenesis is one of important issues in plant embryology, and somaclonal variations are existing in calli and/or regenerants induced from a process of the organogenesis with in vitro circumstances. In this study, expressions of organogenesis-related genes were evaluated and genetic stability of regenerants derived from the process of in vitro organogenesis were measured using ISSR markers in Imperata cylindrica 'Rubra', Poaceae. The expressions of organogenesis-related genes were detected all of regenerants at the process of the organogenesis. All ISSR markers produced with an average of 71 bands per in vitro-cultured regenerants, and the scorable bands were varied from two to eight with an average of 5.14 bands per a primer. The polymorphism rates of the in vitro regenerants were higher than that of mother plants (1.4%), showing 4.1% (pot-cultured regenerants), 4.3% (field-cultured regenerants), 4.2% (in vitro-cultured regenerants), 5.6% (calli with green shoots) and 1.4% (calli), respectively. The genetic similarity matrix (GSM) among all accessions ranged from 0.747 to 1.0 with a mean of 0.868. GSM of the regenerants showed differences (from 0.972 to 1.00) compared with that of mother plants (0.991). According to the clustering analysis, two independent groups were divided into; the one is mother plants and regenerants cultured at room and open field, the other is regenerants cultured in vitro. The results give a new insight for understanding the dynamics of organogenesis in monocot plant.