• Title/Summary/Keyword: Acceleration feedforward control

Search Result 39, Processing Time 0.025 seconds

Learning control of a robot manipulator using neural networks (신경 회로망을 사용한 로보트 매니퓰레이터의 학습 제어)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.30-35
    • /
    • 1990
  • Learning control of a robot manipulator is proposed using the backpropagation neural network. The learning controller is composed of both a linear feedback controller and a neural network-based feedforward controller. The stability analysis of the learning controller is presented. Three energy functions are selected in teaching the neural network controller : 1/2.SIGMA.vertical bar torque error vertical bar $^{2}$, 1/2.SIGMA..alpha. vertical bar position error vertical bar $^{2}$ + .betha. vertical bar velocity error vertical bar $^{2}$ + .gamma. vertical bar acceleration error vertical bar $^{2}$ and learning methods are presented. Simulation results show that the learning controller which is learned to minimize the third energy function performs better than the others in tracking problems. Some properties of the learning controller are discussed with simulation results.

  • PDF

Development of CNC controller based on i80486 and 32bit DSP chip (i80486과 32비트 DSP를 사용한 CNC 제어기의 개발)

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sung-Kwan;Lee, Choong-Hwan;Lee, Yun-Suk;Kang, Moon;Na, Sang-Keun;Lim, Yong-Gyu;Nam, Ki-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.537-540
    • /
    • 1992
  • This paper presents Samsung CNC (Computer Numerical Controller) system with an intel 80486/487 as the main CPU and a 32 bit floating point DSP(Digital Signal Processor) TMS320C30 as the motion control CPU. The Samsung CNC system diverse user-frienly characteristics such as multi-tasking, powerful menu system, internal PLC system, and 2/3 dimensional graphics in wire and solid mode. The main CPU executes central processing program, user interface program, interpreter, BMI, etc while the motion control CPU carries out some interpolations, acceleration/deceleration, and PID control algorithm with feedforward terms. Complex interpolations except linear and circular ones are performed on the main control CPU. The experimental results for the circular interpolation under linear acceleration/deceleration shows that the proposed CNC system can be widely used in controlling machining centers with good machining accuracy.

  • PDF

Adaptive Disturbance Compensation Control for Heavy Load Target Aiming Systems to Improve Stabilization Performances (대부하 표적 지향시스템의 안정화 성능향상을 위한 외란보상 적응제어)

  • Lim, Jae-Keun;Choi, Young-Jun;Lyou, Joon;Seok, Ho-Dong;Kim, Byung-Un;Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1303-1310
    • /
    • 2005
  • Stabilization error of target aiming systems mounted on moving vehicles is an important performance because the error directly affects hit Probability. In a heavy load targetaiming system, the disturbance torque comes from mass unbalance and linear acceleration is a main source of stabilization error. This study suggests an experimental design method of disturbance feedforward compensation control to improve the stabilization performance of heavy load target aiming systems. The filtered_x least square(FxLMS) algorithm is used to estimate the compensator coefficients adaptively. The proposed control is applied to a simple experimental set-up which simulates dynamic characteristics of a real target aiming system. The feasibility of the proposedtechnique is illustrated, along with results of experiments.

A Study for Improvement of Speed Response Characteristic in Four-Switch Three-Phase BLDC Motor (4스위치 3상 BLDC 전동기의 속도응답특성 향상에 대한 연구)

  • Lee J .H.;Kim T. S.;Kim K. W.;Hyun D. S.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.641-645
    • /
    • 2004
  • This paper presents a new speed control method using the acceleration feedforward compensation and using the disturbance torque estimate method. The proposed method improve transition response characteristic of system and has been a robust characteristic in the four-switch three-phase motor drive system in which the gain of speed controller cannot be made large enough. The simulation results prove the validity of the proposed method.

  • PDF

Design of a new command to line-of-sight guidance law via feedback linearization technique (궤환 선형화 기법을 응용한 새로운 시선 지령 유도 법칙의 개발)

  • Chong, Song;ha, In-Joong;Hur, Jong-Sung;Ko, Myoung-Sam;Song, Taek-Lyul;Ahn, Jo-Young;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.93-98
    • /
    • 1989
  • This paper describes the application of the recently developed feedback linearization technique to designing a new Command to Line-of-Sight (CLOS) guidance law. We show that the CLOS guidance problem can be formulated as a tracking problem. Then, using the feedback input-output linearization technique, we find a new 3dimensional CLOS guidance law that can assure zero miss distance for a randomly maneuvering target. It sheds light on the feedforward acceleration compensation terms used in the conventional CLOS guidance laws to improve the performance. To illustrate further the significance of our result, simulation results are given.

  • PDF

A Study on Torque and Speed Control of Three Phase Induction Motor (3상(相) 유도전동기(誘導電動機)의 토크 및 속도제어(速度制御)에 관한 연구(硏究))

  • Choi, K.H.;Jeong, S.K.;Yang, J.H.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1995
  • In general, the electromagnetic transient phenomenon always exists in induction motor(IM) with the torque change. The control performance of IM is very worse than that of D.C motor owing to this transient phenomenon. So many studies about the elimination methods of the transient phenomenon have been making progress. Interesting methods of them are the Field acceleration method(FAM) and the method of impulse addition on the input voltage at the time point of torque change. In this paper, first, the circuit equation of IM is derived from the phase segregation method. The torque equation consisted of the stator and rotor currents is derived from the solving of the circuit equation. As we well known, the transient terms exist in this the torque equation. The method of impulse addition on the input voltage at the instance of torque change is confirmed theoretically for the elimination of the transient phenomenon. With the base on it, the author proposed a real time algorithm to eliminate the transient terms. The control system is consisted of the PI controller with the feedforward of torque change. The author could confirm that the quick stepwise responses of torque and speed can be obtained from response simulations.

  • PDF

A Robust Control Scheme of Linear Induction Machine for Automatic Picking System Using Mass Estimation and Disturbance Force Observer (질량추정과 외란추력 관측기를 이용한 자동피킹 시스템 구동용 선형 유도모터의 강인제어 기법)

  • Choi, Jung-Hyun;Yoo, Dong-Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.62-72
    • /
    • 2013
  • To operate an automatic picking system in distribution center with high precision and high dynamics, this paper presents a robust control scheme of a linear induction motor (LIM) using the mass estimation and disturbance force observer. The force disturbance which gives a direct influence on the control performance of LIM is estimated in real-time through the disturbance observer and compensated by a feedforward manner. To get a satisfactory performance even under the mass variation by reducing the disturbance force due to the mismatched mass during the speed transient such as the acceleration and deceleration periods, a mass estimation algorithm is proposed. A Simulink model for LIM is developed and the validity of the proposed scheme is verified through the comparative simulation studies using Matlab - Simulink.

Velocity Control of Magnet-Type Automatic Pipe Cutting Machine and Measurement of Slipping Using MEMS-Type Accelerometer (자석식 자동 파이프 절단기의 정속제어와 MEMS 형 가속도계를 이용한 미끄럼 측정)

  • 김국환;이성환;임성수;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.475-478
    • /
    • 2004
  • In this paper, a magnet-type automatic pipe cutting machine that binds itself to the surface of the pipe using magnetic force and executes unmanned cutting process is proposed. During pipe cutting process when the machine moves around the pipe laid vertical to the gravitational field, the gravity acting on the pipe cutting machine widely varies as the position of the machine varies. That is, with same driving force from the driving motor the cutting machine moves faster when it climbs down the surface of the pipe and moves slower when it climbs up to the top of the pipe. To maintain a constant velocity of the pipe cutting machine and improve the cutting quality, the authors adopted a conventional PID controller with a feedforward effort designed based on the encoder measurement of the driving motor. It is, however, impossible for the encoder at the motor to measure the absolute position and consequently the absolute velocity of the cutting machine in the case where the slip between the surface of the pipe and wheel of the cutting machine is not negligible. As an attempt to obtain a better estimation of the absolution angular position/velocity of the machine the authors proposes the use of the MEMS-type accelerometer which can measure static acceleration as well as dynamic acceleration. The estimated angular velocity of the cutting machine using the MEMS-type accelerometer measurement is experimentally obtained and it indicates the significant slipping of the machine during the cutting process.

  • PDF

Full digital control of permanent magnet AC servo motors

  • Lee, Jin-Won;Kim, Dong-Il;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we present a full digital control scheme which controls currents and speed of the permanent magnet AC servo motor with large range of bandwidth and high performance. The current equations of the permanent magnet AC servo motor are linearized by feedback linearization technique. Both acceleration feedforward terms and IP controllers, whose gains are functions of motor speed, are used in order to control motor currents. In addition the phase delays in current control loops are compensated by placing phase lead-lag compensators after current commands, which make it possible to avoid high gains in the current controllers. Unity power factor can be achieved by the proposed current controller. Pulsewidth modulation is performed by way of the well-known comparison with a triangular carrier signals. The velocity controller is designed on the basis of the linearized model of the permanent magnet AC servo motor by the proposed current controller. The performance of the entire control system is analyzed in the presence of uncertainty in the motor parameters. The proposed control scheme is implemented using the digital signal processor-based controller composed of an Analog Device ADSP 2111 and a NEC78310. The pulsewidth modulation (PWM) signals are generated through a custom IC, SAMSUNG-PWM1, which has the outputs of current controllers as input. The experimental results show that the permanent magnet AC servo motor can be always driven with high dynamic performance by the proposed full digital control scheme of motor speed and motor current.

  • PDF