• Title/Summary/Keyword: Accelerated Degradation Test

Search Result 252, Processing Time 0.028 seconds

A Study on the Performance Change of Insulation Sheath Due to Accelerated Degradation of IV and HIV Insulated Wire (IV 및 HIV 절연전선의 가속열화에 따른 절연피복의 성능변화에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.114-123
    • /
    • 2019
  • The paper relates to a study on the changes in performance of insulation sheath resulting from accelerated degradation of IV and HIV insulated wire. To assume insulation degradation of IV and HIV insulated wire, accelerated life tests using Arrhenius equation were conducted among accelerated life test models, and experimental samples of 0 year, 10 years, 20 years, 30 years, and 40 years in equivalent life were produced. Whereas the maximum tensile load were increased as accelerated degradation of IV and HIV insulated wire progressed, elongation percentage, rupture time, and flexibility of insulated wires were found to be gradually reduced. According to the additional surface analysis results for the insulated wires per equivalent life using a scanning electron microscope, mechanical properties of the insulator were observed to be reduced as insulation degradation resulting from aging progressed since phenomena such as formation of crystalline structures and perforation, etc. occurred on the sample surface with progression of accelerated degradation. Consequently, institutional replacement of insulated wires and preparation of repair times considering performance degradation of the insulator installed inside buildings are considered necessary in order to prevent in advance the risks of electrical fire resulting from degradation in insulation performance.

A STUDY ON THE ACCELERATED LIFE TESTS OF IMAGE INTENSIFIER ASSEMBLY(KIT-7) (야간투시경용 영상증폭관(KIT-7)의 가속수명시험에 관한 연구)

  • Kim, Sung-Min;Park, Jung-Won;Ham, Jung-Keol;Kim, Kwang-Youn
    • Journal of Applied Reliability
    • /
    • v.7 no.3
    • /
    • pp.127-136
    • /
    • 2007
  • The accelerated life tests(ALTs) and degradation characteristics of image intensifier assembly(KIT-7) under low illuminance and high temperature were investigated. The accelerated life tests were carried out at $5{\times}10^5\;fc-40^{\circ}C,\;10{\times}10^5\;fc-40^{\circ}C,\;5{\times}10^5\;fc-50^{\circ}C,\;10{\times}10^5\;fc-50^{\circ}C$ and relationship related to illuminance and temperature was used as an accelerated life test model. An ALTA program[6] was used to calculate an acceleration factor and the test of life distribution fit, and estimate three parameters of an life test model. To sum up, MTTF 10,000 h at $5{\times}10^{-5}\;fc-40^{\circ}C$ of image intensifier assembly was certificated.

  • PDF

A Study on Degradation Behavior of 1Cr-1Mo-0.25V Steel (1Cr-1Mo-0.25V 강의 열화거동에 관한 연구)

  • 석창성;구재민;김동중;안하늘;박은수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.8-14
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with time of service exposure in the high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, accelerated aging technique are needed to estimate and analyse the material degradation. In the this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And tensile test, $k_{IC}$ test, hardness test and Scanning Electron Microscope analysis were performed in order to evaluate the degradation of 1Cr-1Mo-0.25V steels.

  • PDF

A Study on the Evaluation Method for Durability Life of Vehicle,s ECU (자동차 제어기의 내구수명 평가방안 연구)

  • Kim, Byeong-Woo;Choi, Beom-Jin;Cho, Hyun-Duck;Lee, Do-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.208-213
    • /
    • 2008
  • In order to assess the reliability of the electronics control unit for vehicles, accelerated life test model and procedure are developed. By using this method, failure mechanism and life distribution are analyzed. The main results are as follows : i) the main failure mechanism is degradation failure that is, junction destruction of a semiconductor resin by high temperature. ii) the life distribution of the electronics control unit for vehicles is fitted well to Weibull life distribution and the accelerated life model of that is fitted well to Arrhenius model. iii) at the result of the life distribution, accelerated life test method is developed, and test time for life assessment will be shortened by 5,000 hours by this test method.

Lifetime Prediction of Automotive Airbag Fabrics (자동차 에어백용 원단의 수명예측)

  • Koo, Hyun-Jin;Cho, Hang-Won;Chang, Gap-Shik
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The airbag module is an inflatable restraint system that inflates within 0.05 seconds automatically in a collision to protect the occupants. The airbag fabrics used in the module are required to have the good resilience and strength and also to have retained at least 80% of mechanical properties after using longer than 10 years. In this study, we develop an accelerated test method in order to predict the lifetimes of airbag. In this test, we select temperature and humidity as environmental stresses by analyzing the failure mechanisms of coated and uncoated nylon 66 fabrics. It is found that the degradation of airbag fabrics is effectively accelerated under the combined conditions of high temperature and humidity. Analyzing the results of the accelerated test, the lifetimes of airbag fabrics are predicted to be longer than 10 years.

  • PDF

Degradation Characteristics of Filament-Winding-Laminated Composites Under Accelerated Environmental Test (필라멘트 와인딩 복합적층재의 환경가속 노화시험 평가)

  • Kim, Duck-Jae;Yun, Young-Ju;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.295-303
    • /
    • 2007
  • Degradation behaviors of filament-winded composites have been evaluated under the accelerated environmental test of high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP showed little degradation while GFRP did high reduction by 25% under the influence of high temperature and water However for water-immersed $90^{\circ}$ composites tensile strength of both CFRP and GFRP showed high reduction. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites. In case of shear strength and modulus, both CFRP and GFRP showed high reduction by water-Immersion test but did a slight increase by high temperature and thermal impact conditions.

Durability of MEA Using sPEEK Membrane Reinforced with Poly Imide in PEMFC (고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성)

  • Lee, Hye-Ri;Na, Il-Chai;Oh, Sung-Jun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.296-301
    • /
    • 2017
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, sulfonated poly (ether ether ketone) (sPEEK) membrane reinforced with poly imide was made to enhance of membrane durability. In order to test durability of single (un-reinforced) membrane and reinforced membrane MEA (Membrane and Electrode Assembly), degradation accelerated stress test was used. Before and after degradation, I-V polarization curve, hydrogen crossover current, electrochemical surface area, membrane resistance and charge transfer resistance were measured. As a result of experiments, hydrogen crossover current of reinforced MEA was lower than that of single MEA, therefor durability of reinforced MEA was higher than that of single MEA. There was not especially short phenomena in reinforced MEA after degradation accelerated stress test.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

A Comparative Study of Life Prediction using Accelerated Aging Tests and Machine Learning Techniques to Predict the Life of Composite Materials including CNT Materials (CNT소재를 포함하는 복합소재의 수명예측을 위해 가속열화 시험 및 머신러닝 기법을 이용한 수명예측 비교 연구)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.456-458
    • /
    • 2022
  • Due to the environmental regulations of the International Maritime Organization, shipyards are conducting various researches to improve the efficiency of ships, and efforts are being made to reduce the weight of ships. Recently, composite materials including CNT materials have the advantage of being able to reduce weight by 40% or more compared to general steel plate materials, and have the advantage of being able to be used as a substitute for ship clamps or door skins. Therefore, in this study, to predict the life of composite materials including CNT materials, the results were compared through the accelerated deterioration test method and the life prediction using machine learning techniques. The accelerated degradation test used the Arrhenius model equation, and the machine learning method predicted the life using a regression analysis algorithm.

  • PDF

A Study of Storage Life Estimation for Delay System in the Fuse of 81mm Illuminating Projectile (81미리 조명탄용 신관 KM84A1E1 지연제의 저장수명 예측 연구)

  • Chang, Il-Ho;Kim, Ji-Hoon;Lee, Woo-Chul;Back, Seung-Jun;Son, Young-Kap
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.270-277
    • /
    • 2012
  • Purpose: In this paper, storage lifetime of delay system in the fuse of 81MM illuminating projectile is estimated. Methods: Accelerated degradation testings of tungsten delay system using both temperature and humidity stresses were performed, and then delay time increase of the systems were analyzed as degradation data based on distribution-based degradation processes. Results: The estimated storage lifetime of detonator is between 11.8 years and 17.6 years with each stress-life relationship. Conclusion: Comparing with field data, storage lifetime of 90% reliability is about 12 years.