• Title/Summary/Keyword: Academic Skills

Search Result 622, Processing Time 0.016 seconds

Musical Analysis of Jindo Dasiraegi music for the Scene of Performing Arts Contents (연희현장에서의 올바른 활용을 위한 진도다시래기 음악분석)

  • Han, Seung Seok;Nam, Cho Long
    • (The) Research of the performance art and culture
    • /
    • no.25
    • /
    • pp.253-289
    • /
    • 2012
  • Dasiraegi is a traditional funeral rite performance of Jindo located in the South Jeolla Province of South Korea. With its unique stylistic structure including various dances, songs and witty dialogues, and a storyline depicting the birth of a new life in the wake of death, embodying the Buddhism belief that life and death is interconnected; it attracted great interest from performance organizers and performers who were desperately seeking new contents that can be put on stage as a performance. It is needless to say previous research on Dasiraegi had been most valuable in its recreation as it analyzed the performance from a wide range of perspectives. Despite its contributions, the previous researches were mainly academic focusing on: the symbolic meanings of the performance, basic introduction to the components of the performance such as script, lyrics, witty dialogue, appearance (costume and make-up), stage properties, rhythm, dance and etc., lacking accurate representation of the most crucial element of the performance which is sori (song). For this reason, the study analyzes the music of Dasiraegi and presents its musical characteristics along with its scores to provide practical support for performers who are active in the field. Out of all the numbers in Dasiraegi, this study analyzed all of Geosa-nori and Sadang-nori, the funeral dirge (mourning chant) sung as the performers come on stage and Gasangjae-nori, because among the five proceedings of the funeral rite they were the most commonly performed. There are a plethora of performance recordings to choose from, however, this study chose Jindo Dasiraegi, an album released by E&E Media. The album offers high quality recordings of performances, but more importantly, it is easy to obtain and utilize for performers who want to learn the Dasiraegi based on the script provided in this study. The musical analysis discovered a number of interesting findings. Firstly, most of the songs in Dasiraegi use a typical Yukjabaegi-tori which applies the Mi scale frequently containing cut-off (breaking) sounds. Although, Southern Kyoung-tori which applies the Sol scale was used, it was only in limited parts and was musically incomplete. Secondly, there was no musical affinity between Ssitgim-gut and Dasiraegi albeit both are for funeral rites. The fundamental difference in character and function of Ssitgim-gut and Dasiraegi may be the reason behind this lack of affinity, as Ssitgim-gut is sung to guide the deceased to heaven by comforting him/her, whereas, Dasiaregi is sung to reinvigorate the lives of the living. Lastly, traces of musical grammar found in Pansori are present in the earlier part of Dasiraegi. This may be attributed to the master artist (Designee of Important Intangible Cultural Heritage), who was instrumental in the restoration and hand-down of Dasiaregi, and his experience in a Changgeuk company. The performer's experience with Changgeuk may have induced the alterations in Dasiraegi, causing it to deviate from its original form. On the other hand, it expanded the performative bais by enhancing the performance aspect of Dasiraegi allowing it to be utilized as contents for Performing Arts. It would be meaningful to see this study utilized to benefit future performance artists, taking Dasiraegi as their inspiration, which overcomes the loss of death and invigorates the vibrancy of life.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.