• Title/Summary/Keyword: Abstraction and Classification

Search Result 38, Processing Time 0.031 seconds

Decision Tree Classifier for Multiple Abstraction Levels of Data (다중 추상화 수준의 데이터를 위한 결정 트리 분류기)

  • Jeong, Min-A;Lee, Do-Heon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.1
    • /
    • pp.23-32
    • /
    • 2003
  • Since the data is collected from disparate sources in many actual data mining environments, it is common to have data values in different abstraction levels. This paper shows that such multiple abstraction levels of data can cause undesirable effects in decision tree classification. After explaining that equalizing abstraction levels by force cannot provide satisfactory solutions of this problem, it presents a method to utilize the data as it is. The proposed method accommodates the generalization/specialization relationship between data values in both of the construction and the class assignment phase of decision tree classification. The experimental results show that the proposed method reduces classification error rates significantly when multiple abstraction levels of data are involved.

Component classification modeling for component circulation market activation (컴포넌트 유통시장 활성화를 위한 분류체계 모델링)

  • 이서정;조은숙
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.3
    • /
    • pp.49-60
    • /
    • 2002
  • Many researchers have studied component technologies with concept, methodology and implementation for partial business domain, however there are rarely researches for component classification to manage these systematically. In this paper, we suggest a component classification model, which can make component reusability higher and can derive higher productivity of software development. We take four focuses generalization, abstraction, technology and size. The generalization means which category a component belongs to. The abstraction means how specific a component encapsulates its inside. The technology means which platform for hardware environment a component can be plugged in. The size means the physical component volume.

  • PDF

A Design of Index/XML Sequence Relation Information System for Product Abstraction and Classification (산출물 추출 및 분류를 위한 Index/XML순서관계 시스템 설계)

  • Sun Su-Kyun
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.111-120
    • /
    • 2005
  • Software development creates many product that class components, Class Diagram, form, object, and design pattern. So this Paper suggests Index/XML Sequence Relation information system for product abstraction and classification, the system of design product Sequence Relation abstraction which can store, reuse design patterns in the meta modeling database with pattern Relation information. This is Index/XML Sequence Relation system which can easily change various relation information of product for product abstraction and classification. This system designed to extract and classify design pattern efficiently and then functional indexing, sequence base indexing for standard pattern, code indexing to change pattern into code and grouping by Index-ID code, and its role information can apply by structural extraction and design pattern indexing process. and it has managed various products, class item, diagram, forms, components and design pattern.

A DoF-Based Efficient Image Abstraction (피사계 심도를 고려한 효율적인 이미지 추상화)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.1-10
    • /
    • 2018
  • In this paper, we present a non-photorealistic rendering technique that automatically delivers a stylized abstraction of a photograph with DoF(Depth of field). Our approach is a new filtering method that efficiently classifies DoF regions using RGB channels and automatically adjusts the color abstraction and extracted line quality based on this classification. This DoF-based filtering is simple, fast, and easy to implement and significantly improves the abstraction performance in terms of feature enhancement and stylization.

A methodology for Internet Customer segmentation using Decision Trees

  • Cho, Y.B.;Kim, S.H.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.206-213
    • /
    • 2003
  • Application of existing decision tree algorithms for Internet retail customer classification is apt to construct a bushy tree due to imprecise source data. Even excessive analysis may not guarantee the effectiveness of the business although the results are derived from fully detailed segments. Thus, it is necessary to determine the appropriate number of segments with a certain level of abstraction. In this study, we developed a stopping rule that considers the total amount of information gained while generating a rule tree. In addition to forwarding from root to intermediate nodes with a certain level of abstraction, the decision tree is investigated by the backtracking pruning method with misclassification loss information.

  • PDF

Management of Knowledge Abstraction Hierarchy (지식 추상화 계층의 구축과 관리)

  • 허순영;문개현
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.131-156
    • /
    • 1998
  • Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering Process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention on the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy (KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance. The KAH consists of two types of knowledge abstraction hierarchies. The value abstraction hierarchy is constructed by abstract values that are hierarchically derived from specific data values in the underlying database on the basis of generalization and specialization relationships. The domain abstraction hierarchy is built on the various domains of the data values and incorporates the classification relationship between super-domains and sub-domains. On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, database operations are discussed for both the generalization and specialization Processes, and the conceptual query handling. A prototype system has been implemented at KAIST that demonstrates the usefulness of KAH in ordinary database application systems.

  • PDF

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

A Study on Data Modeling Techniques for Control Requirements of SPICE Reference Model (SPICE 참조모델 요구사항을 지원하는 데이터 모델링 기법에 관한 연구)

  • Chung Kyu-Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.1-6
    • /
    • 2004
  • there needs a new Geographic information system development Technology of the abstraction, encapsulation, modulation and hierarchy using Graphic representation of object modeling Technique. The method is based on composite object of Graphic data with the hierarchy concepts and abstraction of Graphic information in order to improve data abstraction of the graphic data file and described concept of multiple inheritance and classification that supports a wide variety of graphic class such as mesh unit, layer. segment and so on. in simple case of software development using SPICE model and object modeling techniques. this thesis suggested object representation of Graphic data which can reduce software development life cycle and the cost of software maintenance.

  • PDF

Decision Trees For Multiple Abstraction Level of Data (데이터의 다중 추상화 수준을 위한 결정 트리)

  • 정민아;이도현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.82-84
    • /
    • 2001
  • 데이터 분류(classification)란 이미 분류된 객체집단군 즉, 학습 데이터에 대한 분석을 바탕으로 아직 분류되지 않는 개체의 소속 집단을 결정하는 작업이다. 현재까지 제안된 여러 가지 분류 모델 중 결정 트리(decision tree)는 인간이 이해하기 쉬운 형태를 갖고 있기 때문에 탐사적인 데이터 마이닝(exploatory)작업에 특히 유용하다. 본 논문에서는 결정 트리 분류에 다중 추상화 수준 문제(multiple abstraction level problem)를 소개하고 이러한 문제를 다루기 위한 실용적인 방법을 제안한다. 데이터의 다중 추상화 수준 문제를 해결하기 위해 추상화 수준을 강제로 같게 하는 것이 문제를 해결할 수 없다는 것을 보인 후, 데이터 값들 사이의 일반화, 세분화 관련성을 그대로 유지하면서 존재하는 유용화할 수 있는 방법을 제시한다.

  • PDF

휴리스틱 매핑에의한 절삭조건의 결정

  • 김성근;박면웅;손영태;박병태;맹희영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.262-266
    • /
    • 1993
  • The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.