• 제목/요약/키워드: Abstraction and Classification

검색결과 38건 처리시간 0.032초

다중 추상화 수준의 데이터를 위한 결정 트리 분류기 (Decision Tree Classifier for Multiple Abstraction Levels of Data)

  • 정민아;이도헌
    • 정보처리학회논문지D
    • /
    • 제10D권1호
    • /
    • pp.23-32
    • /
    • 2003
  • 대규모 데이터 마이닝 환경에서는 이질적인 데이터베이스 혹은 파일 시스템으로부터 분석 대상 데이터를 수집하는 경우가 일반적이므로, 수집된 데이터가 서로 다른 추상화 수준(abstraction level)으로 표현되기 마련이다, 본 논문에서는 기존의 결정 트리(decision tree)를 서로 다른 추상화 수준으로 표현된 데이터에 적용할 때, 분류상 모순이 일어날 수 있음을 보이고, 그에 대한 해결방안을 제시한다. 제안하는 방법은 데이터 간에 존재하는 일반화/세분화 관련성을 결정 트리의 구축 단계는 물론, 클래스 할당 단계에도 반영하여 데이터간의 의미적 연관성을 효과적으로 활용할 수 있도록 한다. 아울러 실제 데이터에 기반을 둔 실험을 통해, 제안한 방법이 기존 방법보다 분류 오류율을 현저히 줄일 수 있음을 보인다.

컴포넌트 유통시장 활성화를 위한 분류체계 모델링 (Component classification modeling for component circulation market activation)

  • 이서정;조은숙
    • 한국전자거래학회지
    • /
    • 제7권3호
    • /
    • pp.49-60
    • /
    • 2002
  • Many researchers have studied component technologies with concept, methodology and implementation for partial business domain, however there are rarely researches for component classification to manage these systematically. In this paper, we suggest a component classification model, which can make component reusability higher and can derive higher productivity of software development. We take four focuses generalization, abstraction, technology and size. The generalization means which category a component belongs to. The abstraction means how specific a component encapsulates its inside. The technology means which platform for hardware environment a component can be plugged in. The size means the physical component volume.

  • PDF

산출물 추출 및 분류를 위한 Index/XML순서관계 시스템 설계 (A Design of Index/XML Sequence Relation Information System for Product Abstraction and Classification)

  • 선수균
    • 정보처리학회논문지D
    • /
    • 제12D권1호
    • /
    • pp.111-120
    • /
    • 2005
  • 소프트웨어 개발은 다양한 산출물(클래스 부품, 클래스 다이어그램, 폼, 객체, 디자인 패턴)을 생성한다. 단 논문은 이런 산출물의 효율적인 추출 및 분류를 위한 Index/XML 순서관계 시스템을 제안한다. 이 시스템에서 산출물 순서 관계 추출은 패턴 관계정보를 메타 모델링 할 수 있으며 데이터베이스 할 수 있어 재사용 및 저장이 용이하다. 이 Index/XML 순서관계 시스템은 산출물의 추출과 분류를 위한 여러 가지 산출물의 관계 정보를 쉽게 변형할 수 있다. 이 시스템은 디자인 패턴을 효율적으로 분류 추출할 수 있도록 설계한다. 기능적인 인덱싱, 표준 패턴을 위한 순서 기준 인덱싱은 인덱스 아이디로 그룹화 할 수 있으며 분류할 수 있어 효과적이다. 이 정보론 이용하여 산출물들을 효과적으로 분류 및 추출을 할 수 있다.

피사계 심도를 고려한 효율적인 이미지 추상화 (A DoF-Based Efficient Image Abstraction)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권5호
    • /
    • pp.1-10
    • /
    • 2018
  • 본 논문에서는 피사계 심도(DoF, Depth of field)가 포함된 사진을 자동으로 추상화 시켜주는 비 사실적 렌더링(NPR, Non-photorealistic rendering) 기술을 제안한다. 우리의 접근 방식은 RGB 채널을 이용하여 DoF 영역을 효율적으로 분류하고, DoF 크기에 따라 색상을 추상화하며, 라인의 두께를 자동으로 조절함으로 새롭게 필터링 하는 기술이다. DoF기반 필터링 방식은 성능과 디자인 관점에서 추상화의 품질을 크게 개선시켰으며, 간단하고 빨라 구현하기 쉽고, 사진으로부터 추상화나 일러스트레이션을 제작할 때 원본 사진이 갖고 있는 DoF의 특징과 스타일을 효율적으로 잘 표현한다.

A methodology for Internet Customer segmentation using Decision Trees

  • Cho, Y.B.;Kim, S.H.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.206-213
    • /
    • 2003
  • Application of existing decision tree algorithms for Internet retail customer classification is apt to construct a bushy tree due to imprecise source data. Even excessive analysis may not guarantee the effectiveness of the business although the results are derived from fully detailed segments. Thus, it is necessary to determine the appropriate number of segments with a certain level of abstraction. In this study, we developed a stopping rule that considers the total amount of information gained while generating a rule tree. In addition to forwarding from root to intermediate nodes with a certain level of abstraction, the decision tree is investigated by the backtracking pruning method with misclassification loss information.

  • PDF

지식 추상화 계층의 구축과 관리 (Management of Knowledge Abstraction Hierarchy)

  • 허순영;문개현
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.131-156
    • /
    • 1998
  • Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering Process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention on the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy (KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance. The KAH consists of two types of knowledge abstraction hierarchies. The value abstraction hierarchy is constructed by abstract values that are hierarchically derived from specific data values in the underlying database on the basis of generalization and specialization relationships. The domain abstraction hierarchy is built on the various domains of the data values and incorporates the classification relationship between super-domains and sub-domains. On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, database operations are discussed for both the generalization and specialization Processes, and the conceptual query handling. A prototype system has been implemented at KAIST that demonstrates the usefulness of KAH in ordinary database application systems.

  • PDF

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제5권3호
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

SPICE 참조모델 요구사항을 지원하는 데이터 모델링 기법에 관한 연구 (A Study on Data Modeling Techniques for Control Requirements of SPICE Reference Model)

  • 정규장
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.1-6
    • /
    • 2004
  • 객체 모델링 기법의 그래픽 표현을 이용하여 자료의 추상화, 캡슐화, 모듈화, 계층화 할 수 있는 새로운 그래픽 정보시스템 개발 기술이 절실히 필요하다. 그래픽 자료의 추상화 방법을 개선하기 위하여 복합객체 기술로 자료의 추상화와 계층화 개념을 기반으로 모델링하였으며, 메쉬, 레이어, 세그먼트, 인스턴스 등과 같은 여러 가지 도형요소의 클래스들을 지원하는 분류화와 다중상속 관계모델을 제안한다. 객체 모델링 기법과 스파이스 참조 모델을 이용하여 간단한 그래픽 정보시스템 개발사례를 통하여 소프트웨어 개발주기와 소프트웨어 유지보수 비용을 줄일 수 있는 요구사항을 지원하는 객체 표현 방법의 데이터 모델링 기법을 비교하고 평가한다.

  • PDF

데이터의 다중 추상화 수준을 위한 결정 트리 (Decision Trees For Multiple Abstraction Level of Data)

  • 정민아;이도현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.82-84
    • /
    • 2001
  • 데이터 분류(classification)란 이미 분류된 객체집단군 즉, 학습 데이터에 대한 분석을 바탕으로 아직 분류되지 않는 개체의 소속 집단을 결정하는 작업이다. 현재까지 제안된 여러 가지 분류 모델 중 결정 트리(decision tree)는 인간이 이해하기 쉬운 형태를 갖고 있기 때문에 탐사적인 데이터 마이닝(exploatory)작업에 특히 유용하다. 본 논문에서는 결정 트리 분류에 다중 추상화 수준 문제(multiple abstraction level problem)를 소개하고 이러한 문제를 다루기 위한 실용적인 방법을 제안한다. 데이터의 다중 추상화 수준 문제를 해결하기 위해 추상화 수준을 강제로 같게 하는 것이 문제를 해결할 수 없다는 것을 보인 후, 데이터 값들 사이의 일반화, 세분화 관련성을 그대로 유지하면서 존재하는 유용화할 수 있는 방법을 제시한다.

  • PDF

휴리스틱 매핑에의한 절삭조건의 결정

  • 김성근;박면웅;손영태;박병태;맹희영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.262-266
    • /
    • 1993
  • The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.