대규모 데이터 마이닝 환경에서는 이질적인 데이터베이스 혹은 파일 시스템으로부터 분석 대상 데이터를 수집하는 경우가 일반적이므로, 수집된 데이터가 서로 다른 추상화 수준(abstraction level)으로 표현되기 마련이다, 본 논문에서는 기존의 결정 트리(decision tree)를 서로 다른 추상화 수준으로 표현된 데이터에 적용할 때, 분류상 모순이 일어날 수 있음을 보이고, 그에 대한 해결방안을 제시한다. 제안하는 방법은 데이터 간에 존재하는 일반화/세분화 관련성을 결정 트리의 구축 단계는 물론, 클래스 할당 단계에도 반영하여 데이터간의 의미적 연관성을 효과적으로 활용할 수 있도록 한다. 아울러 실제 데이터에 기반을 둔 실험을 통해, 제안한 방법이 기존 방법보다 분류 오류율을 현저히 줄일 수 있음을 보인다.
Many researchers have studied component technologies with concept, methodology and implementation for partial business domain, however there are rarely researches for component classification to manage these systematically. In this paper, we suggest a component classification model, which can make component reusability higher and can derive higher productivity of software development. We take four focuses generalization, abstraction, technology and size. The generalization means which category a component belongs to. The abstraction means how specific a component encapsulates its inside. The technology means which platform for hardware environment a component can be plugged in. The size means the physical component volume.
소프트웨어 개발은 다양한 산출물(클래스 부품, 클래스 다이어그램, 폼, 객체, 디자인 패턴)을 생성한다. 단 논문은 이런 산출물의 효율적인 추출 및 분류를 위한 Index/XML 순서관계 시스템을 제안한다. 이 시스템에서 산출물 순서 관계 추출은 패턴 관계정보를 메타 모델링 할 수 있으며 데이터베이스 할 수 있어 재사용 및 저장이 용이하다. 이 Index/XML 순서관계 시스템은 산출물의 추출과 분류를 위한 여러 가지 산출물의 관계 정보를 쉽게 변형할 수 있다. 이 시스템은 디자인 패턴을 효율적으로 분류 추출할 수 있도록 설계한다. 기능적인 인덱싱, 표준 패턴을 위한 순서 기준 인덱싱은 인덱스 아이디로 그룹화 할 수 있으며 분류할 수 있어 효과적이다. 이 정보론 이용하여 산출물들을 효과적으로 분류 및 추출을 할 수 있다.
본 논문에서는 피사계 심도(DoF, Depth of field)가 포함된 사진을 자동으로 추상화 시켜주는 비 사실적 렌더링(NPR, Non-photorealistic rendering) 기술을 제안한다. 우리의 접근 방식은 RGB 채널을 이용하여 DoF 영역을 효율적으로 분류하고, DoF 크기에 따라 색상을 추상화하며, 라인의 두께를 자동으로 조절함으로 새롭게 필터링 하는 기술이다. DoF기반 필터링 방식은 성능과 디자인 관점에서 추상화의 품질을 크게 개선시켰으며, 간단하고 빨라 구현하기 쉽고, 사진으로부터 추상화나 일러스트레이션을 제작할 때 원본 사진이 갖고 있는 DoF의 특징과 스타일을 효율적으로 잘 표현한다.
Application of existing decision tree algorithms for Internet retail customer classification is apt to construct a bushy tree due to imprecise source data. Even excessive analysis may not guarantee the effectiveness of the business although the results are derived from fully detailed segments. Thus, it is necessary to determine the appropriate number of segments with a certain level of abstraction. In this study, we developed a stopping rule that considers the total amount of information gained while generating a rule tree. In addition to forwarding from root to intermediate nodes with a certain level of abstraction, the decision tree is investigated by the backtracking pruning method with misclassification loss information.
Cooperative query answering is a research effort to develop a fault-tolerant and intelligent database system using the semantic knowledge base constructed from the underlying database. Such knowledge base has two aspects of usage. One is supporting the cooperative query answering Process for providing both an exact answer and neighborhood information relevant to a query. The other is supporting ongoing maintenance of the knowledge base for accommodating the changes in the knowledge content and database usage purpose. Existing studies have mostly focused on the cooperative query answering process but paid little attention on the dynamic knowledge base maintenance. This paper proposes a multi-level knowledge representation framework called Knowledge Abstraction Hierarchy (KAH) that can not only support cooperative query answering but also permit dynamic knowledge maintenance. The KAH consists of two types of knowledge abstraction hierarchies. The value abstraction hierarchy is constructed by abstract values that are hierarchically derived from specific data values in the underlying database on the basis of generalization and specialization relationships. The domain abstraction hierarchy is built on the various domains of the data values and incorporates the classification relationship between super-domains and sub-domains. On the basis of the KAH, a knowledge abstraction database is constructed on the relational data model and accommodates diverse knowledge maintenance needs and flexibly facilitates cooperative query answering. In terms of the knowledge maintenance, database operations are discussed for the cases where either the internal contents for a given KAH change or the structures of the KAH itself change. In terms of cooperative query answering, database operations are discussed for both the generalization and specialization Processes, and the conceptual query handling. A prototype system has been implemented at KAIST that demonstrates the usefulness of KAH in ordinary database application systems.
International journal of advanced smart convergence
/
제5권3호
/
pp.8-15
/
2016
In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.
객체 모델링 기법의 그래픽 표현을 이용하여 자료의 추상화, 캡슐화, 모듈화, 계층화 할 수 있는 새로운 그래픽 정보시스템 개발 기술이 절실히 필요하다. 그래픽 자료의 추상화 방법을 개선하기 위하여 복합객체 기술로 자료의 추상화와 계층화 개념을 기반으로 모델링하였으며, 메쉬, 레이어, 세그먼트, 인스턴스 등과 같은 여러 가지 도형요소의 클래스들을 지원하는 분류화와 다중상속 관계모델을 제안한다. 객체 모델링 기법과 스파이스 참조 모델을 이용하여 간단한 그래픽 정보시스템 개발사례를 통하여 소프트웨어 개발주기와 소프트웨어 유지보수 비용을 줄일 수 있는 요구사항을 지원하는 객체 표현 방법의 데이터 모델링 기법을 비교하고 평가한다.
데이터 분류(classification)란 이미 분류된 객체집단군 즉, 학습 데이터에 대한 분석을 바탕으로 아직 분류되지 않는 개체의 소속 집단을 결정하는 작업이다. 현재까지 제안된 여러 가지 분류 모델 중 결정 트리(decision tree)는 인간이 이해하기 쉬운 형태를 갖고 있기 때문에 탐사적인 데이터 마이닝(exploatory)작업에 특히 유용하다. 본 논문에서는 결정 트리 분류에 다중 추상화 수준 문제(multiple abstraction level problem)를 소개하고 이러한 문제를 다루기 위한 실용적인 방법을 제안한다. 데이터의 다중 추상화 수준 문제를 해결하기 위해 추상화 수준을 강제로 같게 하는 것이 문제를 해결할 수 없다는 것을 보인 후, 데이터 값들 사이의 일반화, 세분화 관련성을 그대로 유지하면서 존재하는 유용화할 수 있는 방법을 제시한다.
The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.