• Title/Summary/Keyword: Absorptivity

Search Result 177, Processing Time 0.025 seconds

A Study on Feasibility of Oil Separation with Oil Absorbent for Spilt Oil Recovery (흡착재에 의한 유출기름 회수용 유수분리의 가능성 연구)

  • 박외철;권병곤
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.39-44
    • /
    • 1998
  • An experimental study on oil absorbent was conducted to investigate the feasibility of utilizing absorbents in oil separation from water-oil mixture for spilt oil recovery. Experiments included investigations of absorptivity and filtering performance of a commercial oil absorbent for different diesel oil concentrations. The measured average absorptivity of the absorbent was above 92% for oil concentrations, 5, 10, 15vo1%, that shows good absorbing performance. Filtering the oil-water mixture, however, was too slow to be used for oil separation. An absorbent baffle system was suggested for oil separation which collects oil panicles by increasing contact between the absorbent and oil particles.

  • PDF

Development of Energy Efficient Smart Module with Variable Direction of Heat Flow, Heat Capacity and Surface Absorptivity (Thermo-Diode식 태양열 이용 모듈(Smart Module)개발)

  • Lee, K.J.;Chun, W.G.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 1998
  • This study has been carried out to develop a thermo-diode system capable of adjusting heat flow direction, solar absorptivity and thermal capacity. What we call "Smart Module" here has emerged from a series of repeated processes involving design, construction and test. In all, it is found that liquid thermo-diode systems are viable in harnessing the sun's energy. The module can be applied for space heating in winter and reduce the cooling load of buildings in summer.

  • PDF

Laser-Heating Characteristics of CuO-Incorporating Glasses

  • Lee, Jungki;Kim, Jongwoo;Kim, Hyungsun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.119-122
    • /
    • 2015
  • Laser sealing with glass frits appears a promising technology for sealing various electronic devices (e.g., solar cells, displays) due to its several advantages. The purpose of this study is to understand the relationship between the composition of glasses and their laser-heating conditions. To allow glass to be sealed using laser heating, CuO was added to two different glass systems, in different amounts. The optical absorptivity of the glass samples was related directly to their CuO content. The laser-heating temperature and the CuO content exhibited a proportional relationship. Furthermore, the heating temperature increased linearly with the laser power used. From these results, we could determine the appropriate laser-heating conditions and CuO content for sealing electronic devices using laser-sealing technology.

Evaluation of Physico-Mechanical Properties and Durability of Larix kaempferi Wood Heat-Treated by Hot Air (고온 열기 처리에 의한 낙엽송재의 물리·역학적 성능 및 내부후성능 변화 고찰)

  • Park, Yonggun;Han, Yeonjung;Park, Jun-Ho;Chang, Yoon-Seong;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Kyungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.334-343
    • /
    • 2015
  • This study was carried out to evaluate quantitatively some properties (density, equilibrium moisture content, shrinkage, water vapor adsorption, water absorptivity, compressive strength, bending strength, hardness and decay resistance) of Larix kaempferi lumber which was heat-treated by hot air and has been used commercially in Korea. Equilibrium moisture content of the heat-treated wood was decreased with increase of hydrophobicity. Dimensional stability of the wood was improved with decrease of shrinkage, water vapor adsorption and free water absorptivity. Also, with the thermo-chemical changes of wood component and lower equilibrium moisture content, decay resistance and compressive strength of heat-treated wood were increased. But, bending strength and hardness of wood were decreased.

The Measurement Method of Thermal Conductivity and Diffusivity of Thin Paint Layer Sprayed on Solid Surface (고체표면에 도포한 도료 박막의 열전도율과 열확산율의 측정법)

  • Kim, Eun-young;Park, Soo-Chun;Kim, Byung-Mun;Lee, Doug-Bong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.311-319
    • /
    • 1999
  • The thermal conductivity ${\lambda}_b$, thermal diffusivity ${\alpha}_b$ of the thin black paint layer sprayed on solid surface and absorptivity a for laser beam are measured by applying a non-contact measurement method of the thermophysical properties of solids. The values of a=0.67, ${\lambda}_b=1.45W/mK$ and ${\alpha}_b=1.24{\times}10^{-6}m^2/s$ are obtained for the sprayed lay~ thickness $z_b{\fallingdotseq}40\;{\mu}m$. Furthermore, for the $z_b{\fallingdotseq}24\;{\mu}m$ thick layers which arc formed by rubbing with a glass rod after spraying, the values of a=0.73, ${\lambda}_b=1.85W/mK$. and ${\alpha}_b=1.09{\times}10^{-6}m^2/s$ are obtained. It is also shown that the present thermal diffusivity ${\alpha}_b$ for $z_b{\fallingdotseq}40\;{\mu}m$ Is about 30~80% larger than those obtained by Araki et al. for the thicker layer $z_b{\fallingdotseq}150{\sim}248\;{\mu}m$. This method could be applied to the measurement of thermophysical properties of thin layer on solids.

Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering

  • Kim, Hong-Sung;Kim, Jong-Tae;Jung, Young-Jin;Ryu, Su-Chak;Son, Hong-Joo;Kim, Yong-Gyun
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.

Analysis of Output Voltage Properties of Non-dispersive Infrared Gas Sensors According to Ambient Temperatures (주변 온도 영향에 따른 비분산 적외선 가스센서의 출력 특성 해석)

  • Park, Han-Gil;Yi, Seung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.294-299
    • /
    • 2018
  • This article describes the output properties of non-dispersive infrared carbon dioxide($CO_2$) sensors resulting from the changes in ambient temperatures. After the developed sensor module was installed inside the gas chamber, the temperature was set to 267 K, 277 K, 300 K, and 314 K, and the concentrations of $CO_2$ gas were increased from 0 to 5,000 ppm. Then, the output voltage at each concentration was obtained. Through these experimental results, two observations were made. First, both the $CO_2$ sensor and the reference sensor showed an increase in the output voltages as the temperature rose from 0 ppm, Second, the full scale outputs of the $CO_2$ sensor grew as the temperature increased. The output characteristics were analyzed based on two factors: change in the radiant energy of the infrared light source and change in the absorptivity of $CO_2$ gas according to the ambient temperature. Additionally, temperature compensation methods were discussed.

The photo-removal Characteristic of NOx by photocatalyst/scoria/loess concrete (광촉매가 첨가된 스코리아/황토 콘크리트의 NOx 제거 특성)

  • Ko, Seong-Hyun;Lee, Jae-Hoon;Hong, Chong-Hyun;Ryu, Soong-Phil;Kim, Moon-Hoon;Moon, Kyung-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.593-596
    • /
    • 2006
  • The environment-friendly building material, photocatalyst/scoria/loess concrete, was prepared using scoria and loess (which have merits as building materials) and photocatalyst (which has the functions to compose the environmental contaminants and of self cleaning). In order to apply this material as a building material, the compressive and flexible strengths, and water absorptivity (which have been set by Korea Industrial Standard) were measured. In order to know the environment-friendly characteristics of this material, several tests, such as, the tests of emissivity and emission power of far infrared ray and acoustic absorptivity, antibacterial test for Escherichia coli and Pseudomonas aeruginosa, antifungal test for mixed fungal strains, and deodorization test of ammonia were carried out. Moreover, the removal characteristics of NOx, and formaldehyde (HCHO) by photocatalyst/scoria/loess concrete were examined as the following different parameters: the removal characteristics of these contaminants with the substitution ratio and the kind of photocatalyst, light source, UV intensity of sunlight, relative humidity, intial NOx concentration.

  • PDF

Architectural acoustics design of the NAMSADANG exclusive use theaters that SCALE MODEL Design (SCALE MODEL설계를 적용한 남사당 전용공연장의 건축음향 설계)

  • Kim, Jung-Joong;Sohn, Jang-Yeul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.33-41
    • /
    • 2008
  • Architectural acoustics design of Namsadang exclusive use theaters should be designed to utilize variously to performance space that can fill flavor and taste of Namsadang performance of the Namsadang six yards. Also, analyze special quality that is sound enemy who follow in sound-absorbing materials fare arrangement of innards that is design material of architectural acoustics laying stress on tradition, use purpose and disappointment size that Namsadang exclusive use theaters seeks on the basis of specific space theme that is experience, disappointment form, seat and passageway Wall and ceiling etc. research and sound and meaning of a character wave motion powerful engineering phenomenon and reduction reverberation loss that is happened from indoor manufacturing thing reduction SCALE model of oval structure research and background of AL composition absorbing material of perforate 25% to heighten acoustic absorptivity of practical use internal organs sound absorption material emir quality sound-absorbing materials insert and layer of air most suitable reverberation time of Namsadang exclusive use theaters that 2.2m volume is $42,218\;m^3$ to become 1.2Sec architectural acoustics design do.

  • PDF

Wideband Frequency Tunable Metamaterial Absorber Using Switchable Ground Plane (그라운드를 전환하여 주파수를 가변할 수 있는 광대역 메타물질 흡수체)

  • Jeong, Heijun;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • In this study, we proposed a wideband frequency tunable metamaterial absorber using a switchable ground plane (SGP). We proposed two fire retardant or flame resistant 4 (FR4) substrate structures for the SGP. An SGP is placed at the middle layer, between the top pattern and the bottom ground plane. The SGP can either be made ground or reactive, by switching the PIN diode ON/OFF. As the frequency is determined by the substrate thickness, the frequency can be switched from the SGP. The proposed absorber is demonstrated by full-wave simulations and measurements. When the SGP is turned on, an absorptivity higher than 90% is achieved from 3.5 GHz to 11 GHz. When the SGP is turned off, an absorptivity higher than 90 % is achieved from 1.7 GHz to 5.2 GHz.