• Title/Summary/Keyword: Absorption chiller/heater

Search Result 57, Processing Time 0.028 seconds

Study on High Performance and Compact Absorber Using Small Diameter Heat Exchanger Tube

  • Yoon Jung-In;Phan Thanh Tong;Moon Choon-Geun;Kim Eun-Pil;Kim Jae-Dol;Kang Ki-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.463-473
    • /
    • 2006
  • The effect of tube diameter on heat and mass transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by both of numerical and experimental study to develop a high performance and compact absorber. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.70mm and 9.52mm. In numerical study a model of vapor pressure drop inside tube absorber based on a commercial 20RT absorption chiller/heater was performed. The effect of tube diameter, longitudinal pitch, vapor Reynolds number, longitudinal pitch to diameter ratio on vapor pressure drop across the heat exchanger tube banks inside absorber have been investigated and found that vapor pressure drop decreases as tube diameter increases, longitudinal pitch increases, vapor Reynolds number decreases and longitudinal pitch to diameter ratio increases. In experimental study, a system includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The experimental results shown that the overall heat transfer coefficient, mass transfer coefficient. Nusselt number and Sherwood number increase as solution flow rate increases. In both of study cases, the heat and mass transfer performance increases as tube diameter decreases. Among three different tube diameters the smallest tube diameter 9.52mm has highest heat and mass transfer performance.

Numerical Simulation of Solution Droplets and Falling Films in Horizontal Tube Absorbers

  • Phan Thanh-Tong;Lee Ho-Saeng;Yoon Jung-In;Kim Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.597-607
    • /
    • 2006
  • This paper presents a numerical simulation of the behavior of the LiBr solution droplets and falling films in horizontal tube banks of absorber. The model developed here accounts for the details of the droplets formation and impact process for absorption on horizontal tubes including the heat transfer from solution film to the tube wall. Especially. the characteristic of unsteady behavior of solution flow has been investigated. Flow visualization studies shown that the solution droplets and falling films have some of the complex characteristics. It is found that. with the numerical conditions similar to the operating condition of an actual absorption chiller/heater, the outlet solution temperature and heat flux from solution film to the tube wall have a stable periodic behavior with time. The solution droplets and falling films in horizontal tube banks of absorber is a periodic unsteady flow. The results from this model are compared with previous experimental observation taken with a high-speed digital video camera and shown good agreement.

Enhancement of Burner Performance of Household Gas Fired Absorption Chiller/Heaters (가정용 가스 냉난방기용 연소기의 성능개선 연구)

  • Yoon, Young-Seok;You, Hyun-Seok;Kim, Tae-Han;Lee, Joong-Seong;Han, Jeong-Ok
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.111-115
    • /
    • 1999
  • In order to enhance the burner performance of household gas fired absorption chiller/heaters, the operating condition(excess air $\approx$ 10%) of the burner currently being used was required to be optimized. In this regard, we examined where the $CO_{\min}$. emission limit was located between blow off and yellow tip limit and how much amount of excess air was exhausted by means of observing blow off and yellow tip limit. It was found that the $CO_{\min}$ limit(excess air ${\approx}$ 4%) was determined near the yellow tip limit. The effect of exhaust pressure on the $CO_{\min}$. limit was that, if exhaust pressure was higher than that in steady condition, higher air blower fan rpm is demanded to maintain the $CO_{\min}$ limit. Therefore, it was necessary to optimize the operating condition of burner in terms of a thermal efficiency and safety.

  • PDF

Analysis of Energy Consumption of Buildings in the University (대학교 건축물의 에너지소비 특성 및 변화 추이 분석:서울소재 A대학교의 에너지 소비 실태를 중심으로)

  • Park, Kang-Hyun;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.633-638
    • /
    • 2011
  • Increasing demand for comfortable indoor environment and air-conditioning demand is also increasing. Building energy consumption in university which is made up of many different kinds factor was researched. Central control air-conditioning systems are being replaced with individually controlled air-conditioning system. The amount of growth of electricity consumption is due to the increasing demand of EHP. Conversely, the demand for absorption chiller-heater is shrinking. Winter and in summer a lot of electricity and gas usage. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because EHP and the absorption chiller-heater are used at the same time in some of the buildings. To use energy efficiently is needed additional research about environmental impact, economic evaluation.

Experimental Investigation of Heat Transfer in Absorber with Small Diameter Tube

  • Phan Thanh Tong;Moon Choon-Geun;Kim Jae-Dol;Yoon Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.261-262
    • /
    • 2006
  • The effect of tube diameter on heat transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by experimental study to develop a high performance and compact absorber. A system Includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.7mm and 9.52mm. The experimental results show that the heat transfer coefficient, Nusselt number and heat flux increase as solution flow rate and cooling water flow rate increase. The heat transfer performance increases as tube diameter decreases. Among three different tube diameters, the smallest tube diameter 9.52mm has highest heat transfer performance. A comparison of the heat transfer coefficient obtained by the present study with those of previous experimental results showed good overall agreement.

  • PDF

Evaluation of Apartment Cooling System by Multi-Criteria Decision Making Analysis (다기준 의사결정 분석에 의한 공동주택의 냉방시스템 평가)

  • Kang, Byoung-Min;Cho, Jin-Hwan;Kim, Young-Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.580-586
    • /
    • 2011
  • In this study, 3 cooling systems of apartment which are air-cooled air conditioner with indoor unit, water-cooled air conditioner with indoor unit and small capacity absorption chiller-heater with FCU have been evaluated by Multi-Criteria Decision Making Analysis. Weights of 7 selected factors which are economics, space, billing, constructability, human comfort, visibility and reliability are determined by expert group of 30 system designers and 30 construction engineers. Final weights were derived for 101 and 166 $m^2$ apartments. Analysis shows that small capacity absorption chiller-heater with FCU is the most favorable system for apartment cooling system.

Comparison of Performance Characteristics in the Chevron Type Plate Heat Exchanger with Performance Correlation (성능 예측 상관식에 따른 쉐브론 형태 판형 열교환기 성능 특성 비교)

  • Bae, Kyung-Jin;An, Sung-Kuk;Cho, Hyun-Uk;Nam, Sang-Chul;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.535-542
    • /
    • 2011
  • The performance of a plate heat exchanger for using liquid solution in the absorption chiller-heater was analyzed. The model was developed by using the various performance prediction correlations. The performance characteristics of the plate heat exchanger with the mass flow rate ratio was verified by using experimental data. To investigate performance of plate heat exchanger with geometry variables, the chevron angle, corrugated wave length, and corrugation depth were changed. As a result, the capacity of Kim and Martin correlation models was similar with the experimental data, and the capacity difference was less than 2%. Besides, the pressure drop of Marin correlation model showed a similar variation with experimental data, and the difference of pressure drop was less than 1.5 kPa.