• 제목/요약/키워드: Absorption Refrigeration System

검색결과 128건 처리시간 0.019초

흡수식 공조 시스템의 동적 모델과 시뮬레이션 (Dynamic Models and Simulation of the Absorption Air Conditioning System)

  • 한도영;이승기
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.994-1003
    • /
    • 2000
  • Control algorithms for the absorption air conditioning system may be developed by suing dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help the development of effective control algorithms for the system. In this study, a dynamic simulation program for the absorption air conditioning system was developed. Dynamic models for an absorption chiller, a cooling tower, an air handling unit, a boiler, a three way valve, a controller, and a duct were developed and programed. Control algorithms for the absorption chiller, the cooling tower, and the air handling unit were selected, and analyzed to show the effectiveness of dynamic models. From the simulation results, it may be concluded that this simulation program may be effectively used for the development of optimal control algorithms of the absorption air conditioning system.

  • PDF

A Review of Heat and Mass Transfer Analysis for Absorption Process

  • Kim, Jin-Kyeong;Kang, Yong-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.131-137
    • /
    • 2006
  • The absorber in which heat and mass transfer phenomena occur simultaneously is one of the most critical components in the absorption system. It has the most significant influence on the performance and the size of the absorption system. During the absorption process, heat and mass transfer resistances exist in both liquid and vapor regions, so that the heat transfer mode should be carefully selected to reduce them. The objective of this paper is to review the previous papers analysing mathematical models of simultaneous heat and mass transfer phenomena during the absorption process. The most conventional working fluids ($H_2O$LiBr and $NH_3/H_2O$) are considered and the most common absorption modes (falling film and bubble mode) are dealt with in this review.

최속 강하법을 이용한 흡수식 냉동공조시스템 제어 (Control of the Absorption Air Conditioning System by Using Steepest Descent Method)

  • 한도영;김진
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.495-501
    • /
    • 2003
  • Control algorithms for the absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. The simulation results showed energy savings and the effective controls of an absorption air conditioning system.

The Optimal Control of an Absorption Air Conditioning System by Using the Steepest Descent Method

  • Han Doyoung;Kim Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권3호
    • /
    • pp.123-130
    • /
    • 2004
  • Control algorithms for an absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. Simulation results showed energy savings and the effective controls of an absorption air conditioning system.

냉각식 시스템과 비교한 복합식 제습냉방시스템의 냉각 열량증가에 관한 실험적 연구 (Study on the Energy Efficiency Improvement of Hybrid Dehumidification Air Conditioning System Compared with Refrigeration System)

  • 이수동;박문수;정진은;최영석
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.952-959
    • /
    • 2004
  • The hybrid liquid desiccant air conditioning system has been in use for many years, primarily in industrial process applications requiring dehumidification and humidity control. In this study, the hybrid dehumidifier has been designed to study the dehumidification characteristic of the aqueous triethylene glycol (TEG) solution. The experimental results show energy efficient characteristics of hybrid liquid desiccant air conditioning system compared with the refrigeration system in terms of energy use, the difference of pressure loss between hybrid liquid desiccant air conditioning system and refrigeration system. Data obtained are useful for design guidance and performance analysis of the hybrid air conditioning system.

알코올 흡수식 열펌프의 난방성능 예측 (Simulation of Alcohol Absorption Heat Pumps for Heating Performance)

  • 김동선
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.269-276
    • /
    • 2015
  • Single-effect $CH_3OH-LiI-ZnBr_2$ and $C_2H_5OH-LiI$ absorption heat pumps are simulated to evaluate feasibility as heating device. These systems are predicted to give higher heating COPs in wide operating ranges compared to conventional systems. Among the two systems, the $C_2H_5OH-LiI$ system is found to be more advantageous for operating in extremely cold weather due to the large solubility of Lil in $C_2H_5OH$.

제1종 LiBr-H2O 흡수식 열펌프의 시뮬레이션 (Simulation of the First Kind LiBr-H2O Absorption Heat Pump)

  • 허준영;최영돈
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.11-26
    • /
    • 1990
  • The first kind LiBr -$H_2O$ absorption heat pump system was simulated and the performances of it were predicted. The elements of heat pump system, evaporator, absorber and generator were analysed by solving the energy balance equations and concentration equations which describe the reactions between working fluids. The results show that the temperature gain of absorber and condenser and the COP of the system are affected considerably by the operating conditions of heat pump system.

  • PDF

수냉형 직렬방식 2중효용 흡수식 냉방기의 열해석과 최적 설계 (Thermal Analysis and Optimum Design of Water-Cooled, Series-Flow Type, Double-Effect Absorption Heat Pump)

  • 오명도;김영률;김선창;김영인
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.332-341
    • /
    • 1992
  • An absorption heat pump cycle has been modeled and simulated to analyze the system performance of water-cooled, series-flow, double-effect absorption heat pump, which can be applied to a direct gas fired cooling system with the medium range of cooling capacity (15RT level). Effect of absorption cooling system parameters, such as concentration difference, inlet temperature of cooling water, 1st generator temperature, leaving temperature differences of condenser and evaporator and efficiency of solution heat exchanger, has been investigated in the view of system cooling performance.

  • PDF

저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석 (Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water)

  • 김병주
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

암모니아-물 흡수식 냉각기의 동적 해석 (Dynamic Analysis of an Ammonia-Water Absorption Chiller)

  • 김병주
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.