• Title/Summary/Keyword: Absorption Cooling System

Search Result 152, Processing Time 0.021 seconds

Type 2 Absorption Cycle to Transport Energy in the Long Distance for District Cooling Application (지역냉방 적용을 위한 LNG냉열 장거리 수송용 제 2종 흡수식 시스템)

  • Cho Young Kyong;Kim Jin-Kyeong;Oh Min Kyu;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.250-255
    • /
    • 2005
  • The objective of this paper is to develop a new energy transport system for district cooling application by using type 2 absorption cycle. Cold energy from the LNG storage system is utilized as the cooling source of the condenser and the rectifier. The pressures of the system, UAs of the evaporator and the desorber, and the inlet temperatures of the refrigerant to each component are considered as the key parameters. The results show that UA of the evaporator is more dominant parameter on COP than that of the desorber and the optimum system pressure for the demand side is estimated as 525 kPa. For the present system, it is recommended that the refrigerant inlet temperature of the evaporator be lower than $4.3^{\circ}C$ for long-distance transportation. It is concluded that the cold energy from the LNG storage system can be effectively applied to the long-distance transportation system for district cooling application with the type 2 absorption cycle. The optimum operation conditions are also predicted from the parametric analysis.

A Study on Optimal Operation of Cooling System Using Dynamic Programing (동적 계획법을 이용한 냉방시스템 최적운전에 관한 연구)

  • Han, Kyu-Hyun;Yoo, Seong-Yeon;Lee, Je-Myo;Lee, Il-Su
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1061-1064
    • /
    • 2009
  • The objective of this study is to find the optimal operational planning of the hybrid cooling system, which is combined by ice storage system and the absorption chiller. The optimization technique used in this study is dynamic programming. The objective function is summed cost during a day including charge and discharge periods of ice storage system and operation time of absorption chiller. Assuming that initially ice storage tank is stored fully and the cooling load is perfectly predicted for the operational planning. This method provides the most efficient and economic combination of equipment operational planning for cooling with respect to energy consumption cost.

  • PDF

Cooling Performance Analysis of Solar Heating and Cooling System in an Office Building (사무소 건물 적용 태양열냉난방시스템의 냉방성능 분석)

  • Jang, Jae-Su;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.217-222
    • /
    • 2011
  • This study examined the cooling performance of a solar heating and cooling system for an office building using the dynamic simulation program (TRNSYS). This solar heating and cooling system incorporates evacuated tube solar collectors of $204m^2$, storage tank of $8m^3$, 116.2kW auxiliary heater, single-effect $LiBr/H_2O$ absorption chiller of 20RT nominal cooling capacity. It was found that for the representing day showed peak cooling load the annual average collection efficiency of the collector was 32.9% and coefficient of performance of single-effect $LiBr/H_2O$ absorption chiller was 0.68. And the results shows for the cooling season the solar fraction of the solar heating and cooling system was 32.2% and maximal and minimal solar fraction was 63.4% for May 17.9% for July respectively.

  • PDF

Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle (일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교)

  • 정시영;이상수;조광운;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF

Basic Design and Performance Analysis of an Solar Absorption Chiller (태양열 구동 흡수식 냉동기의 기본설계 및 성능분석)

  • Baek, N.C.;Yoon, E.S.;Joo, M.C.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.107-112
    • /
    • 1998
  • Basic design of a solar driven absorption cooling machine(SDACM) with a cooling capacity of 5 USRT was carried out. The SDACM is a single effect cycle driven by low temperature hot water from solar collectors. The SDACM design data were calculated by the steady state simulation program which was developed in this study The variation of COP and cooling capacity of the SDACM were investigated at different off-design conditions. Both the cooling capacity and the system COP were improved with decreasing cooling water temperature. If hot water temperature was increased, the cooling capacity was improved but the system COP was found to be decreased. The decrease of the system COP were basically caused by increased thermal loads in the system components.

  • PDF

Analysis of the Operation Conditions and Energy Consumption for Each Energy Source (에너지원별 냉방기기 에너지 소비 및 운영현황 분석)

  • Kang, Yong-Tae;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.195-200
    • /
    • 2009
  • The objectives of this study are to analyze of energy consumption and operation conditions of each cooling system for gas and electric driven systems, and to compare operating cost for five different cooling systems; ice storage system, system air-condition, turbo chiller as the electric driven cooling systems, and absorption chiller and Gas driven Heat Pump (GHP) as the gas driven cooling systems. The sample designs are carried out based on the types of business, capacity, installation region and year.

  • PDF

A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air (공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구)

  • 김선창;오명도;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.

The Characteristics of Cooling Performance on 7RT Ammonia Absorption System (7RT급 암모니아 흡수식 냉온수기의 냉방성능 특성)

  • Lee, Ho-Saeng;Jin, Byoung-Ju;Yoon, Jung-In;Hwang, Jun-Hyeon;Jin, Slm-Won;Kyung, Ick-Soo;Erickson, Donald C
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.433-438
    • /
    • 2009
  • Experimental results for performance characteristics of small $NH_3$ absorption chiller/ heater are presented. The apparatus consists of 7RT water-cooled absorption system, solution pump, boiler, cooling tower and peripheral devices. The effect of experimental parameters, such as refrigerant mass flow rate, solution mass flow rate and cooling water temperature have been investigated in view of the system performance. The capacity of each heat exchanger increased as refrigerant mass flow rate increased in cooling mode. Also, a cooling capacity increased as a strong solution mass flow rate increased. The cooling and heating COP show 0.5, 1.5 regardless of refrigerant mass flow rate, respectively. The results focus on the evaluation for performance characteristics of system with respect to variation of refrigerant mass flow rate under standard design conditions.

Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water (저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

Dynamic Analysis of an Ammonia-Water Absorption Chiller (암모니아-물 흡수식 냉각기의 동적 해석)

  • Kim Byong Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.