• Title/Summary/Keyword: Absorption ${\AA}ngstr{\ddot{o}}m $ exponent

Search Result 4, Processing Time 0.019 seconds

Estimation of Light Absorption by Brown Carbon Particles using Multi-wavelength Dual-spot Aethalometer (다파장 Dual-spot Aethalometer를 이용한 갈색탄소의 광흡수계수 평가)

  • Yu, Geun-Hye;Yu, Jae-Myeong;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.207-222
    • /
    • 2018
  • In this study, light absorption of carbonaceous species in $PM_{2.5}$ was investigated using a dual-spot 7-wavelength Aethalometer(model AE33) with 1-min time interval between January 01 and September 30, 2017 at an urban site of Gwangju. During the study period, two Asian dust (AD) events occurred in April (AD I) and May (AD II), respectively, during which light absorption in total suspended particles was observed. Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths over the study period. Light absorption coefficients by aerosol particles were found to have 2.7~3.3 times higher at 370 nm than at 880 nm. This would be attributed to light absorbing organic aerosols, which is called brown carbon (BrC), as well as BC as absorbing agents of aerosol particles. Monthly average absorption ${{\AA}}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950nm}$) calculated over wavelength range of 370~950 nm ranged from 1.10 to 1.35, which was lower than the $AAE_{370-520nm}$ values ranging from 1.19~1.68 that was enhanced due to the presence of BrC. The estimated $AAE_{370-660nm}$ of BrC ranged from 2.2 to 7.5 with an average of 4.22, which was fairly consistent to the values reported by previous studies. The BrC absorption at 370 nm contributed 10.4~28.4% to the total aerosol absorption, with higher contribution in winter and spring and lower in summer. Average $PM_{10}$ and $PM_{2.5}$ concentrations were $108{\pm}36$ and $24{\pm}14{\mu}g/m^3$ during AD I, respectively, and $164{\pm}66$ and $43{\pm}26{\mu}g/m^3$ during AD II, respectively, implying the greater contribution of local pollution and/or regional pollution to $PM_{2.5}$ during the AD II. BC concentration and aerosol light absorption at 370 nm were relatively high in AD II, compared to those in AD I. Strong spectral dependence of aerosol light absorption was clearly found during the two AD events. $AAE_{370-660nm}$ of both light absorbing organic aerosols and dust particles during the AD I and II was $4.8{\pm}0.5$ and $6.2{\pm}0.7$, respectively. Higher AAE value during the AD II could be attributed to mixed enhanced urban pollution and dust aerosols. Absorption contribution by the light absorbing organic and dust aerosols estimated at 370 nm to the total light absorption was approximately 19% before and after the AD events, but it increased to 32.9~35.0% during the AD events. In conclusion, results from this study support enhancement of the aerosol light absorption due to Asian dust particles observed at the site.

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.