• 제목/요약/키워드: Absorbed dose

검색결과 557건 처리시간 0.03초

Geant4-DICOM Interface-based Monte Carlo Simulation to Assess Dose Distributions inside the Human Body during X-Ray Irradiation

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • 제8권2호
    • /
    • pp.52-59
    • /
    • 2012
  • This study uses digital imaging and communications in medicine (DICOM) files acquired after CT scan to obtain the absorbed dose distribution inside the body by using the patient's actual anatomical data; uses geometry and tracking (Geant)4 as a way to obtain the accurate absorbed dose distribution inside the body. This method is easier to establish the radioprotection plan through estimating the absorbed dose distribution inside the body compared to the evaluation of absorbed dose using thermo-luminescence dosimeter (TLD) with inferior reliability and accuracy because many variables act on result values with respect to the evaluation of the patient's absorbed dose distribution in diagnostic imaging and the evaluation of absorbed dose using phantom; can contribute to improving reliability accuracy and reproducibility; it makes significance in that it can implement the actual patient's absorbed dose distribution, not just mere estimation using mathematical phantom or humanoid phantom. When comparing the absorbed dose in polymethly methacrylate (PMMA) phantom measured in metal oxide semiconductor field effect transistor (MOSFET) dosimeter for verification of Geant4 and the result of Geant4 simulation, there was $0.46{\pm}4.69%$ ($15{\times}15cm^2$), and $-0.75{\pm}5.19%$ ($20{\times}20cm^2$) difference according to the depth. This study, through the simulation by means of Geant4, suggests a new way to calculate the actual dose of radiation exposure of patients through DICOM interface.

자궁난관 조영술 검사 시 Speculum 재질에 따른 흡수선량의 변화에 관한 연구 (Research about the absorbed dose with speculum material-related in Hysterosalpingography)

  • 김연민
    • 대한디지털의료영상학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of our study was to determine the entrance surface dose and absorbed dose in ovary when using the metal speculum and plastic speculum in hysterosalpingography respectively. The examinations was performed in anthropomorphic phantom into which calibrated photoluminescence glass dosimeter were placed on symphysis pubis level surface and ovary area. We checked average fluoroscopy time and spot expose times during the hysterosalpingography. It was average fluoroscopy time 58 sec, spot expose 5 times. We divided the subjects into two different groups to used metal and plastic speculum. We measured 10 times of absorbed dose in the same condition of the anthropomorphic phantom. We compared two groups adsorbed dose on ovary with speculum material-related. The entrance surface dose on of plastic Speculum using group was average 17.23 mGy, absorbed dose on ovary was average 3.51 mGy. The entrance surface dose on ovary of metal Speculum using group was average 19.95 mGy, absorbed dose on ovary was average 4.14 mGy. Plastic speculum using group shows a decrease absorbed dose(17.9%) as compared with metal speculum using group. The method of plastic speculum using in hysterosalpingography. might provide us with lower radiation dose, especially in patients with childbearing stage.

  • PDF

Penumbra Effect on Integral Absorbed Dose in Co-60 Teletherapy

  • Moon, Philip S.
    • Nuclear Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.87-93
    • /
    • 1973
  • Co-60원격치료장치에 장진된 Co-60 선원의 크기 때문에 Co-60원격치료시 치료부위에 반영부분이 생기게 되어 불필요한 방사선조사를 받게된다. 반영부분에서의 흡수적 산선량을 계산할 수 있는 식을 실험적으로 유도하였고, 실재로 Co-60원격치료에서 사용되는 조건을 실험식에 대입하여 반영의 크기가 흡수적산선랑에 미치는 영향을 연구해 보았다. 선원과 표피간의 거리가 크면 클수록 반영부분의 흡수적산선량은 커지고, 선원의 직경이 크면 클수록 반영부분의 흡수적산선량이 커진다. 선원과 피부간의 거리가 커지는데 따라, 어떤 경우에는 반영부분의 흡수적산선량이 치료부분의 흡수적산선량의 수배가 될 때도 있음을 알았다. 따라서 Co-60원격치료시에는 반영효과를 고려에 넣어 불필요한 방사선조사를 피하도록 하여야 하겠다.

  • PDF

Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees

  • Kawaguchi, Isao;Kido, Hiroko;Watanabe, Yoshito
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.143-151
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.

An innovative idea for developing a new gamma-ray dosimetry system based on optical colorimetry techniques

  • Ioan, Mihail-Razvan
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.519-525
    • /
    • 2018
  • Obtaining knowledge of the absorbed dose up-taken by a certain material when it is exposed to a specific ionizing radiation field is a very important task. Even though there are a plenitude of methods for determining the absorbed dose, each one has its own strong points and also drawbacks. In this article, an innovative idea for the development of a new gamma-ray dosimetry system is proposed. The method described in this article is based on optical colorimetry techniques. A color standard is fixed to the back of a BK-7 glass plate and then placed in a point in space where the absorbed dose needs to be determined. Gamma-ray-induced defects (color centers) in the glass plate start occurring, leading to a degree of saturation of the standard color, which is proportional, on a certain interval, to the absorbed dose. After the exposure, a high-quality digital image of the sample is taken, which is then processed (MATLAB), and its equivalent $I_{RGB}$ intensity value is determined. After a prior corroboration between various well-known absorbed dose values and their corresponding $I_{RGB}$ values, a calibration function is obtained. By using this calibration function, an "unknown" up-taken dose value can be determined.

교합방사선사진 촬영시의 흡수선량 계측 (ESTIMATION OF ABSORBED DOSE IN OCCLUSAL RADIOGRAPHY)

  • 유영아;최갑식;이상한
    • 치과방사선
    • /
    • 제20권1호
    • /
    • pp.103-112
    • /
    • 1990
  • The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-2l0 Head & Neck Section/sup R/, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70Kvp and 15mA, 1/4 second (8 inch cone) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  • PDF

파노라마방사선촬영기종에 따른 흡수선량 차이 (Difference in Radiation Absorbed Dose According to the Panoramic Radiographic Machines)

  • 최순철
    • Imaging Science in Dentistry
    • /
    • 제30권1호
    • /
    • pp.11-15
    • /
    • 2000
  • Purpose: The primary objective of this study was to estimate the radiation absorbed doses in certain critical organs in the head and neck region with an Orthopos plus, a Panelipse, and a Panex-E machines. The second objective was to compare the absorbed doses between 5 inch by 12 inch and 6 inch by 12 inch image field for the Orthopos plus. Materials and Methods: Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses were measured at the thyroid gland, the submandibular gland, the parotid gland, the mouth floor, the maxillary sinus, the brain, the mandibular body, the mandibular ramus, the 2nd cervical spine and the skin over TMJ area. Results: The highest absorbed dose value was recorded at the mandibular ramus for the Orthopos plus with narrow image field. Higher absorbed dose values were recorded at the parotid gland, the mouth floor, the submandibular gland, and the 2nd cervical spine. The doses in the parotid gland were 597 μGy and 529 μGy with Orthopos plus, 638 μGy with Panelipse, and 1094μGy with Panex-E. Corresponding figures for the mandibular ramus were 2363 Gy and 1220 μGy, 248 μGy, and 118 μGy. The absorbed doses to the thyroid gland, the maxillary sinus, the brain, and the skin over TMJ were very low. Conclusion: Higher exposure values were recorded for the Orthopos plus than Panelipse and Panex-E. There was no significant differences of the absorbed doses according to the image field size.

  • PDF

6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교 (The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams)

  • 김회남
    • 대한방사선치료학회지
    • /
    • 제10권1호
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF

PTRAN 코드를 이용한 양성자선에 대한 물 흡수선량의 해석 (Absorbed Dose Analysis in Water for Proton Beam using PTRAN Code System)

  • 김진영;정동혁
    • 한국의학물리학회지:의학물리
    • /
    • 제15권3호
    • /
    • pp.140-148
    • /
    • 2004
  • 본 연구에서는 PTRAN 전산코드를 사용하여 양성자에 대한 물 흡수선량의 분포를 계산하였다. 먼저 양성자와 물과의 상호작용에 대하여 정리하고 흡수선량의 계산과정에 대하여 기술하였다. 또한 PTRAN의 수송 알고리즘, 파일구조, 그리고 실행방법을 제시하였다. 본 결과에서는 양성자 에너지 60, 100, 150, 200, 250 WeV에 대하여 양성자에 의한 물 흡수선량의 분포가 쿨롱 상호작용과 핵반응의 합으로 주어지며, 브레그 봉우리의 형태가 에너지손실의 통계적 성질과 다중산란에 의존함을 보였다. 본 연구를 통하여 양성자에 대한 물 흡수선량의 구조 해석에 PTRAN 코드가 유용함을 알 수 있었다.

  • PDF

몬테칼로 기법을 이용한 CBCT의 인체 내 장기의 흡수선량 평가 (Assesment of Absorbed Dose of Organs in Human Body by Cone Beam Computed Tomography using Monte Carlo Method)

  • 김종보;임인철;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권3호
    • /
    • pp.215-221
    • /
    • 2018
  • Cone beam Computed Tomography(CBCT) is an increasing trend in clinical applications due to its ability to increase the accuracy of radiation therapy. However, this leaded to an increase in exposure dose. In this study, the simulation using Monte Carlo method is performed and the absorbed dose of CBCT is analyzed and standardized data is presented. First, after simulating the CBCT, the photon spectrum was analyzed to secure the reliability and the absorbed dose of the tissue in the human body was evaluated using the MIRD phantom. Compared with SRS-78, the photon spectrum of CBCT showed similar tendency, and the average absorbed dose of MIRD phantom was 8.12 ~ 25.88 mGy depending on the body site. This is about 1% of prescription dose, but dose management will be needed to minimize patient side effects and normal tissue damage.