• Title/Summary/Keyword: Absolute humidity

Search Result 80, Processing Time 0.023 seconds

Developing Models for Patterns of Road Surface Temperature Change using Road and Weather Conditions (도로 및 기상조건을 고려한 노면온도변화 패턴 추정 모형 개발)

  • Kim, Jin Guk;Yang, Choong Heon;Kim, Seoung Bum;Yun, Duk Geun;Park, Jae Hong
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-135
    • /
    • 2018
  • PURPOSES : This study develops various models that can estimate the pattern of road surface temperature changes using machine learning methods. METHODS : Both a thermal mapping system and weather forecast information were employed in order to collect data for developing the models. In previous studies, the authors defined road surface temperature data as a response, while vehicular ambient temperature, air temperature, and humidity were considered as predictors. In this research, two additional factors-road type and weather forecasts-were considered for the estimation of the road surface temperature change pattern. Finally, a total of six models for estimating the pattern of road surface temperature changes were developed using the MATLAB program, which provides the classification learner as a machine learning tool. RESULTS : Model 5 was considered the most superior owing to its high accuracy. It was seen that the accuracy of the model could increase when weather forecasts (e.g., Sky Status) were applied. A comparison between Models 4 and 5 showed that the influence of humidity on road surface temperature changes is negligible. CONCLUSIONS : Even though Models 4, 5, and 6 demonstrated the same performance in terms of average absolute error (AAE), Model 5 can be considered the optimal one from the point of view of accuracy.

Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: analysis of the PM10 concentration difference by different methods in coastal areas

  • Shin, So Eun;Jung, Chang Hoon;Kim, Yong Pyo
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.69-82
    • /
    • 2012
  • Based on the measurement data of the particulate matter with an aerodynamic diameter of less than or equal to a nominal 10 ${\mu}m$ (PM10) by the ${\beta}$-ray absorption method (BAM) equipped with an inlet heater and the gravimetric method (GMM) at two coastal sites in Korea, the optimal inlet heater temperature was estimated. By using a gas/particle equilibrium model, Simulating Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2), water content in aerosols was estimated with varying temperature to find the optimal temperature increase to make the PM10 concentration by BAM comparable to that by GMM. It was estimated that the heated air temperature inside the BAM should be increased up to $35{\sim}45^{\circ}C$ at both sites. At this temperature range, evaporation of volatile aerosol components was minor. Similar ($30{\sim}50^{\circ}C$) temperature range was also obtained from the calculation based on the absolute humidity which changed with ambient absolute humidity and chemical composition of hygroscopic species.

A Study on the Characteristics of Total Heat Exchanger under Various Conditions (운전조건에 따른 전열교환기의 성능특성 연구)

  • Bail Cheol-Ho;Lim Young-Heon;Gulnora Diuraeva;Park Ji-Yeol;Kwak Kyung-Min;Chu Euy-Sung;Kim Young-Saeng;Kim Jee-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.891-897
    • /
    • 2005
  • The characteristics of energy Performance for total heat exchanger have been investigated under various conditions. In cooling operation the latent and enthalpy efficiency are affected by the difference of absolute humidity ratio between indoor and outdoor air. In addition to this the characteristics of absorbing material in the element affects the energy performance. Low dry bulb temperature of indoor air or high absolute humidity ratio in outdoor air give high latent and enthalpy efficiency even with the same temperature difference of dry bulb temperate between indoor and outdoor air.

Development of a Refrigeratory-Based Dehumidifier for Humidity Environment Control in Greenhouse (시설원예 습도환경 제어를 위한 냉각식 제습기 개발)

  • Kang, G.C.;Yon, K.S.;Ryou, Y.S.;Kim, Y.J.;Kang, Y.K.;Paek, Y.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.247-255
    • /
    • 2007
  • During the winter season in Korea, the relative humidity of greenhouse at night often exceeds 90% because air temperature inside the greenhouse is usually controlled using a heater with all of windows closed to minimize heat loss, thereby requiring the use of a dehumidifier that can maintain optimum humidity levels of $70{\sim}80%$ to provide a good growth condition of crops. Also, such a high humid condition can cause the development of a pest, such as insects, fungi or diseases. However, the use of most conventional dehumidifiers for low temperature dehumidification is limited because their performance is degraded due to frost accumulation on the evaporator coil. This study was carried out to develop a refrigeratory-based dehumidifier suitable for low temperature dehumidification in greenhouse cultivation. The developed dehumidifier consists of a condenser and an evaporator installed separately so that relative and absolute humidity levels can be reduced when air passed through the condenser and evaporator, respectively. The prototype dehumidifier showed a dehumidification capacity of $5{\sim}7kg/h$ when air with a temperature of $15{\sim}25^{\circ}C$ and a relative humidity of $70{\sim}95%$ came into the dehumidifier. Under the condition that either temperature or relative humidity was fixed, the amount of condensed water was proportional to the levels of both temperature and relative humidity.

Winter Indoor Thermal Environment Status of Nursery Rooms in Workplace Daycare Centers in Jeju Island (제주지역 직장어린이집 보육실의 겨울철 실내온열환경 실태)

  • Kim, Bong-Ae;Ko, Youn-Suk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.81-90
    • /
    • 2017
  • This study was conducted to investigate the thermal environment status of nursery rooms in workplace daycare centers in Jeju and propose measures to improve their indoor physical thermal environment. For this purpose, measurements were performed in the winter indoor physical environment of 51 nursery rooms in 11 workplace daycare centers and a psychological evaluation survey on the thermal environment of nursery rooms was conducted for 70 nursery teachers. The investigation was carried out over 11 days in January 2017. The results are as follow. The average indoor temperature of the nursery rooms was $21.3^{\circ}C$($18.7-23.8^{\circ}C$) and the indoor temperatures of 47 nursery rooms (92.9%) were higher than the environmental hygiene management standard for domestic school facilities ($18-20^{\circ}C$). The average relative humidity was 33.9% (16.4-56.0%), and 37 nursery rooms (86.3%) showed a lower average relative humidity than the standard (40-70%). The average absolute humidity was $9.1g/m^3$ ($4.7-13.6g/m^3$), which was lower than the standard for preventing influenza ($10g/m^3$). When the indoor temperature and humidity of the nursery rooms were compared with international standards, it was found that 85% or more of the 51 nursery rooms maintained appropriate indoor temperatures, but 40-50% of the nursery rooms maintained a low humidity condition. Therefore, they need to pay attention to maintaining the appropriate humidity of the nursery room to keep the children healthy. The average indoor temperature of the nursery rooms showed a weak negative correlation with the average relative humidity. The indoor temperature had a significant effect on the relative humidity: a higher indoor temperature resulted in lower relative humidity. Regarding the fluctuations in the average indoor temperature of the nursery rooms during the day, in daycare centers that used floor heating, the indoor temperature gradually increased form the morning to the afternoon and tended to decrease during lunch time and the morning and afternoon snack times, due to ventilation. The daycare centers that used both floor heating and ceiling-type air conditioners showed a higher indoor temperature and greater fluctuations in temperature compared to the daycare centers that used floor heating only. In the survey results, the average value of the whole body thermal sensation was 3.0 (neutral): 32 respondents (62.7%) answered, "Neutral", Which was the largest number, followed by 21 respondents (30%) who answered, "Slightly hot" and 17 respondents (24.2%) who answered, "Slightly cold." Twenty-nine respondents answered, "Slightly dry," which was the largest number, followed by 28 respondents (54.9%) who answered, "Neutral" and 10 respondents (19.6%) who answered, "Dry." The total number of respondents who answered, "Slightly dry" or "Dry" was large at 39 (56.4%), which suggests the need for indoor environment management to prevent a low-humidity environment. To summarize the above results about the thermal environment of nursery rooms, as the indoor temperature increased, the relative humidity decreased. This suggests the effect of room temperature on the indoor relative humidity; however, frequent ventilations also greatly decrease the relative humidity. Therefore, the ventilation method and the usage of air conditioning systems need to be re-examined.

Thermal Performance of an Enthalpy Exchanger Made of Paper at Different Outdoor Temperatures and Humidities (외기 온·습도 변화에 따른 종이재질 전열교환 엘리먼트 성능에 관한 연구)

  • Kim, Nae-Hyun;Lee, Eul-Jong;Song, Kil-Sup;Oh, Wang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.697-702
    • /
    • 2010
  • An enthalpy exchanger in which heat and moisture transfer occur between the indoor and outdoor air operates at various outdoor conditions. In this study, the effect of the outdoor-air temperature and humidity on the performance of an enthalpy exchanger was experimentally investigated. An apparatus was specially-made to accurately measure the incoming and outgoing dry- and wet-bulb air temperatures as well as the flow rates. Tests were conducted in constant-temperature and constant-humidity chambers at different outdoor temperatures and humidities. It is shown that the effectiveness of latent-heat exchange increases as the relative humidity increases; further, this effect exhibited minimal dependence on the absolute humidity. However, the effectiveness of sensible-heat exchange is independent of both temperature and humidity

A Study on the Application of the Dehumidification System for Radiant Floor Cooling Using Ondol (온돌을 이용한 바닥복사냉방의 제습시스템 적용에 관한 연구)

  • 임재한;여명석;양인호;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.607-616
    • /
    • 2002
  • This study has been conducted to evaluate the applicability of the control method in the dehumidification-integrated radiant floor cooling system in terms of stability of the room air temperature and the control variables through experiments. To do this, the relationship between the control variables in preventing floor surface condensation is first analyzed and the control method is predetermined through simulations. The results are as follows. First, it is necessary to determine the operation status of the dehumidification system according to the relationship between floor surface temperature and dew point temperature in the conditioned space. Second, outdoor reset with indoor temperature feedback control is better than on/off bang-bang control with respect to temperature stability in controlling the room air temperature and the possibility of energy savings. Finally, the humidity sensor can be located with the current thermostat in that there are small differences in absolute humidity in vertical distribution.

Effectiveness of Ventilation Control in a Dry Room with a Heat and Moisture Source

  • Lee, Kwan-Soo;Lim, Kwang-Ok;Ahn, Kang-Ho;Jung, Young-Sick
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • The temperature and moisture distributions in a dry room with a heat and moisture source -i.e., workers- are studied numerically by using a standard $k-\varepsilon$ turbulence model. In order to evaluate the effectiveness of heat and moisture ventilation inside the room, the heat removal capacity and the moisture exhaust efficiency are introduced. The effectiveness of ventilation control is analyzed by evaluating the temperature and humidity distributions in the room quantitatively. It is found that the mean absolute humidity inside the room is almost constant regardless of the models and the heat generation rates in this study range. This results from the fact that the moisture generation by the workers was relatively small. Through the modification of the design, 40% improvement in critical decay time was achieved.

  • PDF

Model for assessing the contamination of agricultural plants by accidentally released tritium (삼중수소 사고유출로 인한 농작물 오염 평가 모델)

  • Keum, Dong-Kwon;Lee, Han-Soo;Kang, Hee-Suk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • A dynamic compartment model was developed to appraise the level of the contamination of agricultural plants by accidentally released tritium from nuclear facility. The model consists of a set of inter-connected compartments representing atmosphere, soil and plant. In the model three categories of plant are considered: leafy vegetables, grain plants and tuber plants, of which each is modeled separately to account for the different transport pathways of tritium. The predictive accuracy of the model was tested through the analysis of the tritium exposure experiments for rice-plants. The predicted TFWT(tissue free water tritium) concentration of the rice ear at harvest was greatly affected by the absolute humidity of air, the ratio of root uptake, and the rate of rainfall, while its OBT(organically bound tritium) concentration the stowing period of the ear, the absolute humidity of air and the content of hydrogen in the organic phase. There was a good agreement between the model prediction and the experimental results lot the OBT concentration of the ear.

Prediction of Effect on Outside Thermal Environment of Building and Green Space Arrangement by Computational Fluid Dynamic (CFD 시뮬레이션을 이용한 건축물 및 녹지배치가 외부 열환경에 미치는 영향 예측)

  • Kim, Jeong-Ho;Son, Won-Duk;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2012
  • This study forecasts changes in thermal environment and microclimate change per new building construction and assignment of green space in urban area using Computational Fluid Dynamics(CFD) simulation. The analysis studies temperature, humidity and wind speed changes in 4 different given conditions that each reflects; 1) new building construction; 2) no new building construction; 3) green spaces; and 4) no green spaces. Daily average wind speed change is studied to be; Case 2(2.3 m/s) > Case 3. The result of daily average temperate change are; Case 3($26.5^{\circ}C$) > Case 4($24.6^{\circ}C$) > Case 2($23.9^{\circ}C$). This result depicts average of $2.5^{\circ}C$ temperature rise post new building construction, and decrease of approximately $1.8^{\circ}C$ when green space is provided. Daily average absolute humidity change is analysed to be; Case 3(15.8 g/kg') > Case 4(14.1 g/kg') > Case 2(13.5 g/kg'). This also reveals that when no green spaces is provided, 2.3 g/kg' of humidity change occurs, and when green space is provided, 0.6 g/kg change occurnd 4(1.8 m/s), which leads to a conclusion that daily average wind velocity is reduced by 0.5 m/s per new building construction in a building complex.