• 제목/요약/키워드: Abrasive Material

검색결과 319건 처리시간 0.031초

친환경 전분계 연마재를 이용한 플라스틱 도장면의 페인트 박리를 위한 블라스팅 가공에 관한 연구 (A Study on Blasting for Paint Exfoliation on Plastic Coated Faces Using the Environment-Friendly Abrasive Materials of Starch Series)

  • 이여해;김연슬;이희관;양균의;문상돈
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.79-86
    • /
    • 2010
  • The environment-friendly abrasive materials of starch series has a wide range of application value such as deburring of plastic injection products, paint exfoliation and surface treatment of painted products and polishing, etc. In this study, an experiment of paint exfoliation was performed by using the environment-friendly abrasive materials made of cheap starch, and its performance was reviewed. By adjusting the grit size of abrasive materials, nozzle pressure, nozzle feed and number of nozzle repetition, paint could be exfoliated effectively. In this experiment, it was found that the most suitable condition was grit size 0.75~1.0 mm, nozzle pressure 0.4 MPa, nozzle feed 5 mm/min and number of processing repetition 2 times.

초음파 진동을 이용한 세라믹스의 미세 구멍 가공 기술 (A Study on Micro-hole machining for Ceramics(A1$_2$O$_3$) Using Ultrasonic vibration)

  • 이봉구;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.988-992
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramics in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvements in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by the electrical or chemical characteristics of the work material, making it suitable for application to ceramics. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

CMP와 Spin Etching에 의한 Blanket Wafer(TEOS) 가공 특성 비교에 관한 연구 (A Study on Machining Characteristic Comparison of Blanket Wafer(TEOS) by CMP and Spin Etching)

  • 김도윤;정해도;이은상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1068-1071
    • /
    • 2001
  • Recently, the minimum line width shows a tendancy to decrease and the multi-level to increase in semiconductor. Therefore, a planarization technique is needed, which chemical polishing(CMP) is considered as one of the most important process. CMP accomplishes a high polishing performance and a global planarization of high quality. But there are several defects in CMP such as microscratches, abrasive contaminations, and non-uniformity of polished wafer edges. Spin Etching can improve the defects of CMP. It uses abrasive-free chemical solution instead of slurry. Wafer rotates and chemical solution is simultaneously dispensed on a whole surface of the wafer. Thereby chemical reaction is occurred on the surface of wafer, material is removed. On this study, TEOS film is removed by CMP and Spin Etching, the results are estimated at a viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU).

  • PDF

Synthesis Peculiarities of Nanocomposite Structures by Abrasive-reaction Interactions

  • Ketegenov, T.;Tyumentseva, O.;Kasymbecova, D.;Korobova, N.;Katranova, Z.;Urakaev, F.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.643-644
    • /
    • 2005
  • New methods of nano-sized material and composite coating preparations have been considered on the base of mathematical model of abrasion-reaction interaction of milling and grinding bodies in planetary centrifugal mill. The essence of the method is the abrasive and oxidative wear of the milling bodies and amorphous (better inert) additives. Interactions between them has been supplied the necessary impulse of pressure and temperature on the impact-frictional contacts and promoted chemical processes. The offered method can find application for such processing as sintering and geological minerals opening.

  • PDF

CMP 연마입자의 마찰력과 연마율에 관한 영향 (Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP))

  • 김구연;김형재;박범영;이현섭;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

CFD를 이용한 CMP의 Groove Sizing 최적화 (Optimization of Groove Sizing in CMP using CFD)

  • 장지환;이도형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1522-1527
    • /
    • 2004
  • In this paper, slurry fluid motion, abrasive particle motion, and effects of groove sizing on the pads are numerically investigated in the 2D geometry. Groove depth is optimized in order to maximized the abrasive effect. The simulation results are analyzed in terms of shear stress on pad, groove and wafer, streamline and velocity vector. The change of groove depth entails vortex pattern change, and consequently affects material removal rate. Numerical analysis is very helpful for disclosing polishing mechanism and local physics.

  • PDF

MR Fluid Jet Polishing 시스템을 위한 분사노즐 및 전자석 모듈 개발 (Development of an Injection Nozzle and an Electromagnet Module for a MR Fluid Jet Polishing System)

  • 이정원;조용규;하석재;신봉철;조명우
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.767-772
    • /
    • 2012
  • Generally, abrasive fluid jet polishing system has been used for polishing of complex shape or freeform surface which has steep local slopes. In the system, abrasive fluid jet is injected through a nozzle at high pressure; however, it is inevitable to lose its coherence as the jet exits a nozzle. This problem causes incorrect polishing results because of unstable and unpredictable workpiece material removal at the impact zone. In order to solve this problem, MR fluid jet polishing method has been developed using a mixture of abrasive and MR fluid which can maintain highly collimated and coherent jet by applied magnetic field. Thus, in this study, an injection nozzle and an electromagnetic module, most important parts in the MR polishing system, were designed and verified by magnetic field and flow analysis. As the results of experiments, it can be confirmed that stable fluid jets for polishing were generated since smooth W-shapes and uniform spot size were observed regardless of standoff distance changes.

Poly-Si, TEOS, SiN 막질의 CMP 공정 중의 연마입자 오염 특성 평가. (The Adhesion of Abrasive Particle during Poly-Si, TEOS and SiN CMP)

  • 김진영;홍의관;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.561-562
    • /
    • 2006
  • The purpose of this study was to investigate the root cause of adhesion of silica and ceria particles during Poly-Si, TEOS, and SiN CMP process, respectively. The zeta-potentials of abrasive particles and wafers were observed negative surface charges in the alkaline solutions. SAC and STI patterned wafers have intermediate values of their composition surface's zeta potentials. The theoretical interaction force and adhesion force of silica and ceria particle were calculated in solution with acidic, neutral and alkaline pH. A stronger attractive force was calculated for silica and ceria particles on wafers in acidic solutions than in alkaline solutions. The theoretical interaction forces of the SAC and STI patterned wafers have intermediate values of their constitution wafer's values. The adhesion forces is observed lower values in alkaline solutions than in acidic solutions. And the ceria particle has lower adhesion than that of the silica particle.

  • PDF

연속 전해드레싱의 연삭조건변화에 의한 경면생성 및 시뮬레이션에 관한 연구 (A Study on the Generation of Mirror-like Surface and Simulation in Grinding Condition by Inprocess Electrolytic Dressing)

  • 김정두;이연종
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2962-2969
    • /
    • 1993
  • Recently, a study on the mirror-like surface grinding of brittle materials is active and as branch of these study, new dressing method for superabrasive wheel, electrolytic inprocess dressing(Elid) was developed. Using Elid, the mirror-like surface of brittle material can be generated without polishing or lapping process. In the future, Elid grinding will take important place in industry. But so far the analysis on Elid grinding was not quantitative but qualitative. In this study, The purpose is the quantitative analysis on Elid grinding by computer simulation, For computer simulation, the mean and the variance of the abrasive distribution were measured by tracing of the grinding wheel with stylus in transverse direction in the case of respective dressing current condition. This measurement result in a density distribution of abrasive by mathematical formulation using statistical method. The prediction of the surface roughness in Elid grinding was based on this density distribution.

마이크로 연마입자 분사를 이용한 티타늄합금의 표면처리에 관한 연구 (A study on the surface treatment of titanium alloy by micro abrasive blaster)

  • 김성원;왕덕현;김원일
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.20-27
    • /
    • 2009
  • The characteristics of titanium alloy as a relatively advanced material is low density, avirulent and, superior corrosive resistant, therefore the use of titanium alloy is increasing lately in aerospace and mechanical technologies, precision machinery, electronics industry, petro-chemical industries and biomedical areas. In these days, the titanium alloy product is required various surface qualities of not only smooth surface but also rough surface depending on usages. The purpose of this experimental research is to find the optimum surface roughness of titanium alloy of Ti-6Al-4V, by micro abrasive blasting as depending variable conditions of working pressure, nozzle size, working time, stand of distance and power particle size.

  • PDF