• Title/Summary/Keyword: Abrasion property

Search Result 105, Processing Time 0.032 seconds

The Mechanical Properties and Abrasion Behavior of Warp Knitted Fabrics for Footwear

  • Jeon, Youn-Hee;Jeong, Won-Young;Park, Jung-Woo;An, Seung-Kook
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.151-155
    • /
    • 2003
  • The abrasion behavior of three kinds of warp knitted fabrics, which are normally used for upper sole of footwear, was evaluated. We measured the changes of mechanical and structural properties of each sample as abrasion cycle increased. Each sample showed similar trends in compression and surface properties but there were significant differences in abrasion rate among the samples. The mechanical properties showed remarkable differences with directions. The frictional coefficient (MIU) of fabric surface increased at the beginning of abrasion and decreased as abrasion cycles increased. The weight and thickness of the fabric linearly decreased with abrasion cycles. The surface roughness (SMD) and the compressional resilience (RC) decreased as abrasion cycles increased while compressional energy (WC) increased.

Changes on the Abrasion and Mechanical Properties of Warp Knitted Fabric for Footwear with Softeners and Heat Treatments (유연제 및 열처리에 따른 신발용 경편성물의 마모 및 역학 특성 변화)

  • Jeon, Youn-Hee;Koo, Ja-Gil;Jeong, Won-Young;An, Seung-Kook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.494-499
    • /
    • 2010
  • Knitted fabrics are very popular for their numerous advantages such as greater comfort, attractive garment appearance, better fit on the body, etc. In this study, we investigated the mechanical properties and abrasion property of warp knitted fabrics for footwear which treated with several softeners to improve abrasion resistance. The antistatic softener among the various softeners showed high improvement in abrasion resistance. Among the mechanical properties with treating conditions, WT (tensile energy), G (shear stiffness), B (bending rigidity) increased as treating timeincreased. But the other mechanical properties were little changed with treating concentration.

The Effect of Number of Twists of Lyocell Yarns on Compression Property and Abrasion Resistance Blanket Fabrics (라이오셀방적사의 꼬임수에 따른 담요직물의 압축특성과 마모강도)

  • Song, Min-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.363-369
    • /
    • 2006
  • In this the study, Lyocell fabrics for blanket were developed to get high value added goods for elder and Infant. Therefore, the purpose of the study was determine the effect of twist per inch on the physical properties of developed fabrics, including compression property and abrasion resistance on the process for making Lyocell combined yarns. For comparison, commonly used cotton blanket was used. The results were as the follows: 1) Dimensional changes of Lyocell fabrics was in -3% which value was pretty stable, and antistatic property was very good with 10V of electric propensity voltage which means there was no static electricity at all. Pilling property of Lyocell fabrics showed 3 grade which was good and air permeability and moisture vapor transmission rate of Lyocell fabrics were higher than those of cotton fabric and keeping warmth rate of Lyocell fabrics was about 50% which means it very warms. 2) Twist per inch of Lyocell combined yarns increased with tensile strength and elongation of Lyocell fabrics. 3) Twist per inch of Lyocell combined yarns increased with decreasing thickness reduction rate and therefore, compression property of those was pretty good. Specially, compression property of Lyocell fabrics made with yarns of 3.9TPI was better than those of cotton fabric. 4) Twist per inch of Lyocell combined yarns increased with abrasion resistance of Lyocell fabrics.

End Use Tactile Property of the Split-type Nylon/PET Microfiber Fabrics (마찰과 세탁에 의한 극세섬유 직물의 표면과 촉감변화에 관한 연구)

  • 오경화;윤재희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.539-545
    • /
    • 2004
  • In this study, the effect of washing, bleaching, and abrasion on tactile and the water absorption properties of the split-type Nylon/Polyester (N/P) microfiber pile-knit was investigated under various enduse conditions. We examined the water absorption and surface properties of PET microfiber which will be very useful in the future. We also studied the variations of their performance during usage caused by friction and repeated washing, regard to all kinds of physical, chemical changes which will appear while using those textiles. Progress in further splitting of PET microfiber fabric is observed with increases in the number of washing and bleaching cycles, and treatment temperature. Initial water absorption (%) was increased with progress in splitting, which provided efficient capillary channel. Surface properties were varied with additional splitting by washing and abrasion. Formation of pilling and splitting by abrasion increase surface roughness, diminishing tactile property, and reduced water absorption property. The current results from this study is expected to provide the appropriate washing management guide to consumers, and to inform end-use performance of product to a producer for improving product quality.

Improvement of Frictional Property of BR/CIIR Composite Rubber for Shoes Outsole (운동화 겉창용 BR/CIIR 고무 복합체의 마찰특성 향상에 대한 연구)

  • Pyo, Kyungduk;Choi, Jungsu;Lee, Jongnyun;Park, Chacheol
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.255-261
    • /
    • 2013
  • This paper introduced a new preparation method of a composite rubber by mixing BR (butadiene rubber) and CIIR (chloro-isobutyl rubber) for the purpose of improving frictional property of BR. Since BR has high abrasion and low frictional properties, its frictional property needs to be enhanced in order to be used as an outsole of a sport shoe. Such enhancement was difficult to achieve by simple blending of CIIR. In here, CIIR was added into BR matrix after CIIR was pre-crosslinked for a time period, and both high frictional and high abrasion resistance properties were achieved. Our experiments showed that the composite rubber blend of 60% of BR and 40% of pre-crosslinked CIIR had desired BR's frictional and abrasion resistance properties for sport shoes.

Vacuum Pressure Treatment of Water-Soluble Melamine Resin Impregnation for Improvement of Mechanical Property, Abrasion Resistance and Incombustibility on Softwood (목재의 기계적 성질, 내마모성 및 난연성 개선을 위한 진공가압 멜라민 수지함침처리)

  • Oh, Seung-Won;Park, Hee Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.792-797
    • /
    • 2015
  • In this study, three softwood species were treated with water-soluble melamine resin by different concentration and treatment time under vacuum pressure for improving mechanical property, abrasion resistance, and incombustibility. After the treatment, a compreg was manufactured and then evaluated on physical properties. Additionally, incombustibility of compreg was determined by comparing with a wood that was treated by spraying a water-soluble fire retardant on surface. As concentration of resin increased, bending strength and Brinell hardness increased as well as abrasion resistance, but there was no correlation on treatment and mechanical properties by treatment time. The wood impregnated by water-soluble melamine resin under vacuum pressure showed better incombustibility than that of a water-soluble fire retardant sprayed wood. Therefore, this treatment could be used for improving incombustibility of wood.

Abrasion and Impact Wear Resistance of the Fe­based Hardfacing Weld by Dispersing the Recycled WC

  • Kang, N.H.;Chae, H.B.;Kim, J.K.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 35 wt.% HM and 0­6 wt.% of the alloying element, Fe­75Mn­7C(FeMnC), was used for the gas metal arc(GMA) welding. The FeMnC addition to the 35 wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. However, the 6 wt.% FeMnC addition to the 35 wt.% HM exhibited the better impact wear resistance than the hardfacing weld by the 40 wt.% HM.

  • PDF

Properties of Silicon-deposited Meta-aramid Fabrics by RF Magnetron Sputtering (RF 마그네트론 스퍼터링에 의해 실리콘이 증착된 메타아라미드 직물의 성질 분석)

  • Park, Jong Hyeon;Lee, Sun Young;Kim, Chun Su;Kang, Song Hee;Kim, Eui Hwa;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • Meta-aramid fabric has been widely used as the reinforcement of composites due to its high flame resistance and tearing strength. Functionality such as abrasion resistance of fabric is very important for specialty fabrics used in car racing suits. In this study, to improve abrasion resistance property of meta-aramid fabric, silicon deposition was conducted by utilizing RF magnetron sputtering. The sputtering process parameters effects were investigated as sputtering power and substrate temperature. The obtained results suggest that the silicon deposition on the meta-aramid fabric has obvious effect upon increasing the abrasion resistance, the thermal insulation and the electric resistance condition for silicon deposition was established. In conclusion, the results of this study have made it possible to manufacture meta-aramids with higher abrasion strength.

A Study on Wear Characteristics of High strength aluminum alloys by Surface Hardening (표면경화에 의한 고강도 알루미늄 합금의 마모 특성에 관한 연구)

  • Lee, Nam-Soo;Huh, Sun-Chul;Lee, Kwang-Young;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1601-1606
    • /
    • 2007
  • In order for high strength aluminum alloys to be used in transportation systems and the aerospace industry, excellent mechanical and physical properties are required. In particular, excellent anti-abrasion property is indispensable for parts that require driving force. In general, surface treatment technologies such as high frequency heat treatment, gas solid carburizing, surface rolling, shot peening are used as ways of improving anti-abrasion property. Among various surface treatment technologies, this research chose shot peening processing for Al7075-T6, which is well known as representative high-strength alloy steel. Wear characteristics were compared and analyzed after shot peening processing with shot ball velocities of 40m/s and 70m/s in order to investigate the effects of shot peening processing on wear characteristics.

  • PDF

Wet Environmental and Mechanical Characteristics for Polyethylene-based Insulating Materials (Polyethylene 계열 절연재료의 환경적·기계적 특성)

  • Song, Woo-Chang;Choi, Won-Seok;Park, Ha-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • In this study, four kinds of specimens of PE(polyethylene)-based insulating materials were prepared for selecting the optimum insulation materials in a wet environment. The specimens were tested by various methods, the anti tracking test, the transmittance test in the water vapor transmittance(WVT) and the abrasion resistive test, etc. The HDPE(high-density polyethylene) specimen was showed excellent property in the tracking resistance test and the lowest transmittance in water vapor transmittance test. In the abrasion resistive test, the LLDPE(linear low-density polyethylene) and MDPE(medium-density Polyethylene) were showed excellent mechanical properties. The value of cut-through resistance for MDPE and HDPE were superior to that for LLDPE and LDPE(low-density polyethylene).