• Title/Summary/Keyword: Above-ground standing biomass

Search Result 16, Processing Time 0.015 seconds

Organic Carbon Distribution and Budget in the Quercus variabilis Forest in the Youngha valley of Worak National Park (월악산 용하계곡 굴참나무림의 유기탄소 분포 및 수지)

  • NamGung, Jeong;Choi, Hyeon-Jin;Han, A-Reum;Mun, Hyeong-Tae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.170-176
    • /
    • 2008
  • Organic carbon distribution and carbon budget of a Quercus variabilis forest in the Youngha valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from 2005 through 2006. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above- and below-ground biomass was 56.22 and 13.90 ton C ha$^{-1}$. Amount of organic carbon in annual litterfall was 2.33 ton C ha$^{-1}$ yr$^{-1}$. Amount of soil organic carbon within 50 cm soil depth was 119.14 ton C ha$^{-1}$ 50 cm-depth$^{-1}$. Total amount of organic carbon in this Q. variabilis forest was 193.96 ton C ha$^{-1}$. Of these, 61.43% of organic carbon was allocated in the soil. Net increase of organic carbon in above- and below-ground biomass in this Q. variabilis forest was estimated to 7.68 ton C ha$^{-1}$ yr$^{-1}$. The amount of carbon evolved through soil respiration was 6.21 ton C ha$^{-1}$ yr$^{-1}$. Net amount of 1.47 ton C ha$^{-1}$ yr$^{-1}$ was absorbed from the atmosphere by this Q. variabilis forest.

Distribution of Biomass and Production in Man-made Pitch Pine Plantation in Korea (리기다 소나무 인공조림지의 물질생산량에 관한 연구)

  • Yim Kyong-bin;Lee Kyong-jae;Kwon Tae-ho;Park In-hyeop
    • Journal of Korea Foresty Energy
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1982
  • To study tile comparison of aboveground biomass of Pinus rigida Mill. of 18-year-old, plantations located in Whaseong, Yuseong and Wanju district were selected. Ten sample trees in each district selected taking account of DBH distribution were felled carefully to minimize loss of branches and stem analysed by 1m lag segment sectioned from base . The tree height and DBH were measured for sample trees in total growing within $200m^2$ experimental plot. The diagram of oven-dry weight distribution of stem, branch and needle for each 1m segment was constructed. The logarithmic regression equations between dry weight of each component and the two variables, $DBH^2$ and tree height, combined term were presented. The standing crops in the sample stand was estimated to be as much as 23.88, 54.09 and 42.68 tons of dry matter, above ground , per ha in Whaseong, Yuseong anf Wanju district respectively. Annual net production was estimated at 253,657 and 3.65 tons per ha per year respectively. The net assimilation rate was 1.65,1.95 and 1.81 kg/kg/yr in Whaseong, Yuseong and Wanju district respectively. The efficency of leaf to produce stem was 0.99, 1.12 and 1.30 kg/kg/yr respectively.

  • PDF

Studies on the Productivity and the Production Structure of the Forests I. On the Productivity of Pinus rigida Plantation (삼림의 생산구조와 생산력에 대한 연구 I. 리기다소나무 조림지에 대하여)

  • 김준호
    • Journal of Plant Biology
    • /
    • v.14 no.4
    • /
    • pp.19-26
    • /
    • 1971
  • The sample stand of Pinus rigida plantation was chosen from those at the Choongnam Forest Experiment Station, Choongnam. The diameter at breast height (D) and the height of tree (H) of each tree in the sample plot of 200$m^2$ were measured yearly a from 1967 through 1969. The stand was 12.7-13.4cm in mean diameter and had a stand density of 2,150 trees per ha. The trunk, branches and leaves of each sample tree were separately weighed according to the stratified clip technique. The allometric relation between D2H and dry weight of trunk (Ws), branches (Wb) and leaves (Wl) were approximated by $$W_s=0.05917 (D^2H)^{0.837}$$ $$W_0=0.00655 (D^2H)^{0.989 }$$ $$W_l=0.04466(D^2H)^{0.690}$$ From the above, the standing crops in the sample stand was estimated to be as much as 76.7, 81.7 and 88.2 tons of dry matter, above ground, per ha in 1967, 1968 and 1969, respectively. Annual net production, as the sum of the biomass newly produced during one year, was estimated at 4.97-5.47 tons per ha per year. The respiratory and the photosynthetic rate deduced from theoretical calculations were 0.045 and 0.74kg of dry matter per kg per year. Tentative estimate of annual respiratory loss was made and annual gross production was roughly estimated at 4.4-4.7 and 10.7-12.9 tons of dry matter per ha per year. The ratio of respiratory loss to gross production was approximately 36-41:1.

  • PDF

Studies on the Productivity and the Productive Structure of the Forests II. Comparison between the Productivity of Pinus densiflora and of Quercus mongolica Stands located near Choon-Chun City (삼림의 생산구조와 생산력에 대한 연구 II. 춘천지방의 소나무림과 신갈나무림의 비교)

  • 김준호
    • Journal of Plant Biology
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 1972
  • A comparison between the productivity of the evergreen needle pine(Pinus densiflora) and of the deciduous broad leaved oak(Quercus mongolica) stands, which is located near Choon-Chun city, Kangwon dist. have been established. The pine stand had a stand density of 938 trees per ha and oak stand had of 638 trees per ha. The diameter at breast height (D) and the height of tree (H) of each tree were measured in sample plot of 800$m^2$. Twelve standard sample trees chose from the sample area felled down, and then weighed the stem, branches and leaves separately, according to both the stratified clip technique and the stem analysis. The vertical distribution of photosynthetic system was arranged effectively for high productivity in the productive structure of both trees. The allometric relation between D2H and dry weight of stem (Ws), branches (Wb) and leaves (Wl) of pine were approximated by log Ws=0.6212 log D2H-0.5383 log Wb=0.4681 log D2H-0.7236 log Wl=0.2582 log D2H-5.1567 and those of oak were approximated by log Ws=0.5125 log D2H+0.0231 log Wb=0.5125 log D2H-0.3755 log Wl=0.8721 log D2H-2.9710 From the above, the standing crops of pine and oak in the sample area were estimated to be as much as 38.83ton and 48.11 ton of dry matter, above ground, per ha, respectively. Annual net production as the sum of the biomass newly formed during one year was appraised at 12.66ton/ha.yr in pine stand and at 8.74 ton/ha.yr in oak. The reason of high productivity of pine stand compared with oak might be resulted from much more about 4 times of the amount of the photosynthetic system, but less non-photosynthetic one of pine than those of oak. To increase the productivity of the forest stands investigated it was necessary to make densly a stand density, to be abundant in the inorganic nutrients and to preserve much water in soil to conserve the litters.

  • PDF

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan (서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량)

  • Won, Ho-Yeon;Kim, Deok-Ki;Han, Areum;Lee, Young-Sang;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2016
  • Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park (월악산 소나무림의 유기탄소 분포 및 수지)

  • Lee, Ji-Young;Kim, Deok-Ki;Won, Ho-Yeon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • Organic carbon distribution and carbon budget of a Pinus densiflora forest in the Songgye valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from May 2011 through April 2012. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above and below ground biomass was 52.25 and 14.52 ton C $ha^{-1}$. Amount of organic carbon in annual litterfall was 4.71 ton C $ha^{-1}$. Amount of organic carbon within 50cm soil depth was 58.56 ton C $ha^{-1}$ 50cm-$depth^{-1}$. Total amount of organic carbon in this Pinus densiflora forest was estimated to 130.04 ton C $ha^{-1}$. Amount of organic carbon in tree layer, shrub and herb layer was 4.12, 0.10 and 0.04 ton C $ha^{-1}yr^{-1}$ and total amount of organic carbon was 4.26 ton C $ha^{-1}yr^{-1}$. Amount of organic carbon returned to the forest via litterfall was 1.62 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through soil respiration was 6.25 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.19 and 3.06 ton C $ha^{-1}yr^{-1}$. The amount of organic carbon absorbed from the atmosphere of this Pinus densiflora forest was 1.07 ton C $ha^{-1}yr^{-1}$ when it was estimated from the difference between Net Primary Production and microbial respiration.