• Title/Summary/Keyword: Abnormal time series events

Search Result 5, Processing Time 0.019 seconds

Time Series Modeling Pipeline for Urban Behavioral Demand Prediction under Uncertainty (COVID-19 사례를 통한 도시 내 비정상적 수요 예측을 위한 시계열 모형 파이프라인 개발 연구)

  • Minsoo Jin;Dongwoo Lee;Youngrok Kim;Hyunsoo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • As cities are becoming densely populated, previously unexpected events such as crimes, accidents, and infectious diseases are bound to affect user demands. With a time-series prediction of demand using information with uncertainty, it is impossible to derive reliable results. In particular, the COVID-19 outbreak in early 2020 caused changes in abnormal travel patterns and made it difficult to predict demand for time series. A methodology that accurately predicts demand by detecting and reflecting these changes is, therefore, required. The current study suggests a time series modeling pipeline that automatically detects and predicts abnormal events caused by COVID-19. We expect its wide application in various situations where there is a change in demand due to irregular and abnormal events.

Assessment of weather events impacts on forage production trend of sorghum-sudangrass hybrid

  • Moonju Kim;Kyungil Sung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.792-803
    • /
    • 2023
  • This study aimed to assess the impact of weather events on the sorghum-sudangrass hybrid (Sorghum bicolor L.) cultivar production trend in the central inland region of Korea during the monsoon season, using time series analysis. The sorghum-sudangrass production data collected between 1988 and 2013 were compiled along with the production year's weather data. The growing degree days (GDD), accumulated rainfall, and sunshine duration were used to assess their impacts on forage production (kg/ha) trend. Conversely, GDD and accumulated rainfall had positive and negative effects on the trend of forage production, respectively. Meanwhile, weather events such as heavy rainfall and typhoon were also collected based on weather warnings as weather events in the Korean monsoon season. The impact of weather events did not affect forage production, even with the increasing frequency and intensity of heavy rainfall. Therefore, the trend of forage production for the sorghum-sudangrass hybrid was forecasted to slightly increase until 2045. The predicted forage production in 2045 will be 14,926 ± 6,657 kg/ha. It is likely that the damage by heavy rainfall and typhoons can be reduced through more frequent harvest against short-term single damage and a deeper extension of the root system against soil erosion and lodging. Therefore, in an environment that is rapidly changing due to climate change and extreme/abnormal weather, the cultivation of the sorghum-sudangrass hybrid would be advantageous in securing stable and robust forage production. Through this study, we propose the cultivation of sorghum-sudangrass hybrid as one of the alternative summer forage options to achieve stable forage production during the dynamically changing monsoon, in spite of rather lower nutrient value than that of maize (Zea mays L.).

An Anomalous Event Detection System based on Information Theory (엔트로피 기반의 이상징후 탐지 시스템)

  • Han, Chan-Kyu;Choi, Hyoung-Kee
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.173-183
    • /
    • 2009
  • We present a real-time monitoring system for detecting anomalous network events using the entropy. The entropy accounts for the effects of disorder in the system. When an abnormal factor arises to agitate the current system the entropy must show an abrupt change. In this paper we deliberately model the Internet to measure the entropy. Packets flowing between these two networks may incur to sustain the current value. In the proposed system we keep track of the value of entropy in time to pinpoint the sudden changes in the value. The time-series data of entropy are transformed into the two-dimensional domains to help visually inspect the activities on the network. We examine the system using network traffic traces containing notorious worms and DoS attacks on the testbed. Furthermore, we compare our proposed system of time series forecasting method, such as EWMA, holt-winters, and PCA in terms of sensitive. The result suggests that our approach be able to detect anomalies with the fairly high accuracy. Our contributions are two folds: (1) highly sensitive detection of anomalies and (2) visualization of network activities to alert anomalies.

Investigating Regions Vulnerable to Recurring Landslide Damage Using Time Series-Based Susceptibility Analysis: Case Study for Jeolla Region, Republic of Korea

  • Ho Gul Kim
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.213-224
    • /
    • 2023
  • As abnormal weather events due to climate change continue to rise, landslide damage is also increasing. Given the substantial time and financial resources required for post-landslide recovery, it becomes imperative to formulate a proactive response plan. In this regard, landslide susceptibility analysis has emerged as a valuable tool for establishing preemptive measures against landslides. Accordingly, this study conducted an annual landslide susceptibility analysis using the history of landslides that occurred over many years in the Jeolla region, and analyzed areas with a high potential for landslides in the Jeolla region. The analysis employed an ensemble model that amalgamated 10 data-based models, aiming to mitigate uncertainties associated with a single-model approach. Furthermore, based on the cumulative data regarding landslide susceptible areas, this research identified regions vulnerable to recurring landslide damage in Jeolla region and proposed specific strategies for utilizing this information at various levels, including local government initiatives, adaptation plan development, and development approval processes. In particular, this study outlined approaches for local government utilization, the determination of adaptation plan types, and considerations for development permits. It is anticipated that this research will serve as a valuable opportunity to underscore the significance of information concerning regions vulnerable to recurring landslide damage.

Outlook for Temporal Variation of Trend Embedded in Extreme Rainfall Time Series (극치강우자료의 경향성에 대한 시간적 변동 전망)

  • Seo, Lynn;Choi, Min-Ha;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.13-23
    • /
    • 2010
  • According to recent researches on climate change, the global warming is obvious to increase rainfall intensity. Damage caused by extreme hydrologic events due to global change is steadily getting bigger and bigger. Recently, frequently occurring heavy rainfalls surely affect the trend of rainfall observations. Probability precipitation estimation method used in designing and planning hydrological resources assumes that rainfall data is stationary. The stationary probability precipitation estimation method could be very weak to abnormal rainfalls occurred by climate change, because stationary probability precipitation estimation method cannot reflect increasing trend of rainfall intensity. This study analyzed temporal variation of trend in rainfall time series at 51 stations which are not significant for statistical trend tests. After modeling rainfall time series with maintaining observed statistical characteristics, this study also estimated whether rainfall data is significant for the statistical trend test in near future. It was found that 13 stations among sample stations will have trend within 10 years. The results indicate that non-stationary probability precipitation estimation method must be applied to sufficiently consider increase trend of rainfall.