• Title/Summary/Keyword: Abnormal grain

Search Result 164, Processing Time 0.017 seconds

Abnormal Grain Growth Behavior of $BaTiO_3$ Ceramics with Addition of Seed Grains (Seed 입자 첨가에 따른 $BaTiO_3$ 요업체의 비정상 입성장거동)

  • 이태헌;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.587-593
    • /
    • 1995
  • Abnomal grain growth behavior of BaTiO3 ceramics was investigated with addition of seed grains. It was foudn that the nucleation rate of abnormal grain was constant and growth of abnormal grain was linearly increased with sitnering time, regardless of amount of seed grains. These facts were also confirmed by fitting of the volume fraction of abnormal grain vs. sintering time using Avrami type equation (n=4). It was suggested that seed grains did not change the nucleation rate or growth mechanism of abnormal grain but increase the number of abnormal grains at initial stage of sintering and then it led to fine microstructure of BaTiO3 ceramics.

  • PDF

Microstructure Control of Sr-Ferrite by Seed Addition (Seed 첨가에 의한 Sr-Ferrite의 미세구조 제어)

  • 박준홍;신효순;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.90-94
    • /
    • 1995
  • In Sr-ferrite system, it has been attempted to inhibit the abnormal grian growth using Sr-ferrite powders synthesized by molten salt method as the matrix and the seeds, respectively. At each sintering temperature, the addition of seed more than 15% suppressed the abnormal grain growth, and the uniform microstructure resulted. Particularly, at 12$25^{\circ}C$, it was observed that the maximum number of the abnormal grain growth nuclei was achieved since the abnormal grain growth was suppressed even by the addition of 10% seed.

  • PDF

The Effect of Ti/Sr Ratio on Abnormal Grain Growth of Nb-doped $SrTiO_3$ ($Nb_2O_5$를 첨가한 $SrTiO_3$의 비정상 입성장에 미치는 Ti/Sr 비의 영향)

  • 배철휘;전형탁;박재관;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.791-796
    • /
    • 1997
  • The influence of Ti/Sr ratio on abnormal grain growth of Nb-doped SrTiO3 was investigated. For specimens which were isothermally sintered at temperatures above 144$0^{\circ}C$, the nucleation and growth rates of abnormal grain growth were decreased with increasing Ti/Sr ratio. But the onset time of abnormal grain growth was increased with increasing Ti/Sr ratio. The cross-section of abnormally grown grains was mostly hexagonal. When the specimens were quenched in air after they reached their setting temperatures at a heating rate of 3$^{\circ}C$/min, the onset temperature of abnormal grain growth was increased with increasing Ti/Sr ratio and the final grain size was independent of Ti/Sr ratio. The cross-section of abnormally grown grains was mostly rectangular.

  • PDF

The Effect of Pressure on the Abnormal Grain Growth in Alumina (알루미나의 비정상 입자성장에 미치는 압력의 영향)

  • Park, Hoon;Park, Sang-Yeup
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.617-624
    • /
    • 2000
  • Abnormal grain growth in alumina was investigated during sinter-HIP process for better understanding of pressure effect on microstructural development. Abnormal grain growth of monolithic alumina was observed near surface region rather than interior region of specimen. Finite element analysis was used to estimate the pressure distribution developed in the specimen. Pressure distribution analysis was in good agreement with grain size distributjion in the specimen. The results of finite element analysis provided that abnormal grain growth monolithic alumina was resulted from the inhomogeneous pressure distribution in the specimen. MgO addition in alumina was effective for the suppression of abnormal grain growth in alumina under inhomogeneous pressure distribution during sinter-HIP process.

  • PDF

Suppression of the abnormal grain growth in the sintering of YIG (YIG 소결시 나타나는 비정상입성 장 현상과 그의 억제)

  • 김동영;한진우;전동석;이상석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.466-469
    • /
    • 2002
  • In the sintering of YIG, abnormal grain growth phenomena was observed. This abnormal grain growth is related to the sintering temperature in this experiment. In the sintering below 145$0^{\circ}C$., the sintered body showed narrow size distribution. However, in the sintering at 145$0^{\circ}C$, a few grains grew rapidly with respect to other grains, and bimodal size distribution was appeared. Liquid phase was not observed far from the abnormally grown large grains, but only near the large grains. This means that the abnormal grain growth was caused by the nonuniform distribution of liquid phase which promote the grains growth. This nonuniform distribution of liquid phase was thought to be due to the nonuniform mixing of the starting materials. This abnormal grain growth was suppressed by enhance the compositional uniformity by multiple calcination.

  • PDF

Abnormal Grain Growth Behaviors of $BaTiO_3$ Ceramics with Controlling of Particle Size Distributjion of Calcined Powder (하소분체의 입도조절에 따른 $BaTiO_3$ 요업체의 비정상 입성장거동)

  • 이태헌;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.147-154
    • /
    • 1995
  • Abnormal grain growth behavior of BaTiO3 ceramics with controlling of particle size distribution of calcined powder was investigated. The particle size distribution was controlled by changing the calcining temperature or by using of classification and regrinding process. With broadening of the normallized size distribution in calcined powder, it showeda normal grain growth behavior in sintered body due to an increase of volume fraction of seed grain in the calcined powder. It was supposed that the seed grains could easily contact each other for the rapid grain growth during sintering process and resulted in fast switching-over from abnormal to normal grain growth stage.

  • PDF

Abnormal grain growth of ZnO ceramics (ZnO 세라믹스 거대입성장)

  • Kim, Young Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.251-256
    • /
    • 2019
  • In the process of ZnO ceramic sintering at a temperature of 1385℃, higher than the normal sintering temperature, some grains were growth up to mm scale. When sintered at 1400℃ for 8 hours, the size of the grains that are not involved in the abnormal growth is as large as 30~40 ㎛, but the size of the abnormal grown grain reaches 1,000 ㎛, which is more than 10,000 times bigger in volume than the normal one within 8 hr growth. As a cause of rapid and abnormal grain growth, primary particle size distribution, compaction density variation within sample and doping of impurities could be considered. The primary particle size distribution could be considered main reason for abnormal grain growth but no solid evidence was obtained. Through the observation of the microstructure, it is presumed that the giant grains grow absorbing the neighbor grains through a grain rotation process.

Effect of Abnormal Grain Growth and Heat Treatment on Electrical Properties of Semiconducting BaTiO3Ceramics

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.21-25
    • /
    • 2002
  • Effect of abnormal grain growth and heat treatment time on the electrical properties of donor-doped semiconductive BaTiO$_3$ceramics was examined. La-doped BaTiO$_3$ceramics was sintered at 134$0^{\circ}C$ for different times from 10 to 600 min in order to change the volume fraction of the abnormal grains in samples. As a result, samples with different volume fraction of abnormal grain growth from 22 to 100% were prepared. The samples were annealed at 120$0^{\circ}C$ for various times. The resistivity of the sam-ples at room and above Curie temperature was examined. The complex impedance measurement as functions of the volume fraction of abnormal grains and annealing time was conducted. Separation of complex impedance semicircle was observed in a sample in which abnormal and fine grains coexist. The results are discussed from a viewpoint of microstructure-property relationship.

Suppression of the Abnormal Grain Growth in the Sintering of Yttrium Iron Garnet (Yttrium Iron Garnet의 소결시 나타나는 비정상 입성장 현상과 그의 억제)

  • 김동영;이홍열;전동석;이상석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1131-1135
    • /
    • 2003
  • In the sintering of YIG, abnormal grain growth phenomena were observed. This abnormal grain growth is related to the sintering temperature in this experiment. In the sintering below 1450$^{\circ}C$, the sintered body showed narrow size distribution. However, in the sintering at 1450$^{\circ}C$, a few grains grew rapidly with respect to other grains, and bimodal size distribution was appeared. From the observation of the microstructure, liquid phase was not observed far from the abnormally grown large grains, but only near the large grains. This means that the abnormal grain growth was caused by the nonuniform distribution of liquid phase which promote the grains growth. Because the growth rate of grains near the liquid phase is much higher than that of the other grains, a few grains grow rapidly. This nonuniform distribution of liquid phase was thought to be due to the nonuniform mixing of the calcined powders. This abnormal grain growth was suppressed by enhancement of the compositional uniformity by multiple calcination.

Grain Shape and Grain Growth Behavior in the Na1/2Bi1/2TiO3-BaTiO3 System (Na1/2Bi1/2TiO3-BaTiO3 계에서 입자모양과 입자성장 거동)

  • Moon Kyoung-Seok;Kang Suk-Joong
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.119-123
    • /
    • 2006
  • The grain growth behavior of $0.95Na_{1/2}Bi_{1/2}TiO_{3}-0.05BaTiO_{3}$ (NBT-5BT) has been investigated with respect to the grain shape. The powder compacts of NBT-5BT were sintered at 1200 for various times. The corresponding equilibrium shape was a round-edged cube with flat {100}-faces. Abnormal grains were not observed in the specimens sintered for 1 to 12 h but abnormal grains appeared when sintered for 24 h. Before the formation of abnormal grains, a valley was observed in the measured grain size distribution of NBT-5BT, showing that the grain size distribution was a combination of two unimodal distributions. The present result suggests that the grain growth in NBT-5BT was governed by the growth of facet planes which would occur via 2-dimansional nucleation and growth.