• Title/Summary/Keyword: Abnormal change

Search Result 726, Processing Time 0.027 seconds

Why Should I Ban You! : X-FDS (Explainable FDS) Model Based on Online Game Payment Log (X-FDS : 게임 결제 로그 기반 XAI적용 이상 거래탐지 모델 연구)

  • Lee, Young Hun;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • With the diversification of payment methods and games, related financial accidents are causing serious problems for users and game companies. Recently, game companies have introduced an Fraud Detection System (FDS) for game payment systems to prevent financial incident. However, FDS is ineffective and cannot provide major evidence based on judgment results, as it requires constant change of detection patterns. In this paper, we analyze abnormal transactions among payment log data of real game companies to generate related features. One of the unsupervised learning models, Autoencoder, was used to build a model to detect abnormal transactions, which resulted in over 85% accuracy. Using X-FDS (Explainable FDS) with XAI-SHAP, we could understand that the variables with the highest explanation for anomaly detection were the amount of transaction, transaction medium, and the age of users. Based on X-FDS, we derive an improved detection model with an accuracy of 94% was finally derived by fine-tuning the importance of features that adversely affect the proposed model.

The Protective Effects of Dioscoreae Rhizoma on the Exposure to UVA of MEF cells (산약의 Mouse embryonic fibroblast cell에 대한 자외선 손상 방어효과)

  • Jin, Yong-Jae;Sung, Jung-Seok;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.3
    • /
    • pp.36-50
    • /
    • 2009
  • Purpose: This study was to determine the protective effects of Dioscoreae Rhizoma on the Mouse Embrio Fibroblast (MEF) cells exposed to the ultraviolet rays(UVA). Methods: The samples were assigned randomly to five groups; control group without any treatments, UVA group exposed only to UVA, DR group exposed only to the Dioscoreae Rhizoma, UVA-DR group exposed to UVA before being treated with the Dioscoreae Rhizoma, and DR-UVA group treated with the Dioscoreae Rhizoma before being exposed to UVA. The survival rate of cells, metabolic rate of cells, transformation of nucleus within cells, alteration of cell cycle, effects on the apoptosis, the change of the amount of protein related to cell cycle were measured in order to determine the cell protective effects of the Dioscoreae Rhizoma on each group. Results: 1. DR-UVA group has more cell protective effects compared to the UVA group in all experiments, indicating that the Dioscoreae Rhizoma protects skin from UVA physically and chemically. 2. UVA-DR group shows more efficiency compared to UVA group in rapid recovery of damaged cell and leading highly damaged cells to apoptosis, preventing the expression of abnormal cells. Conclusions: Dioscoreae Rhizoma has effects of protecting MEF cells from UVA, of recovering cells damaged by UVA, and of prohibiting the expression of abnormal cells.

Comparison of Pollen Morphology Responded by High Temperature in Adzuki Bean (Vigna angularis) and Mung Bean (Vigna radiata)

  • Hye Rang Park;Eun Ji Suh;Ok Jae Won;Jae-Sung Park;Jin Hee Seo;Won Young Han;Ki Do Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.150-150
    • /
    • 2022
  • Plant reproduction associated with crop yields is highly vulnerable to global climate change components such as high and cold temperatures. The objectives of this study were to determine the effects of season-high exposure to temperature treatments in pollen morphology on Adzuki bean (V. angularis) and Mung bean (V. radiate). V. angularis and V. radiata were treated at high temperatures in the high temperature gradient greenhouse designed to cause temperature deviation. The pollen shapes treated at high temperature were compared by an electron scanning microscope. As a result, it was confirmed that the number of abnormal pollens morphology at high temperature was the least in V. radiata, and V. angularis was vulnerable to high temperatures. Also, it was found that the number of abnormal pollen morphology atT4 (Con +5~6℃) varied according to the cultivars of V. angularis. Therefore, the differences in Vigna species or cultivars with thermo-tolerance in pollen morphology to high temperature are projected to occur in the changeable future climate.

  • PDF

Analysis of Extreme Weather Characteristics Change in the Gangwon Province Using ETCCDI Indices (Expert Team on Climate Change Detection and Indices (ETCCDI)를 이용한 강원지역 극한기상특성의 변화 분석)

  • Kang, Keon Kuk;Lee, Dong Seop;Hwang, Seok Hwan;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1107-1119
    • /
    • 2014
  • Interesting in abnormal climate is currently growing because of climate change. With this, an increasing number of people continue to show concern over the negative effects of such changes. In Korea, the annual average rainfall amount increased to about 19% from 1,155 mm in the 1910s to 1,375 mm in the 2000s. By the end of the 21st century, it has been projected that rainfall will further increase to about 17%. In particular, the 10-year frequency of localized heavy rain of more than 100-mm rainfall per day reached 385 days in the last 10 years. As such, it increased 1.7 times from 222 in the 1970s-80s. The extreme events caused by climate change is thus reported as having exacerbated over the years. Gangwon-province will suffer more from climate change than any other region in Korea because of its mostly mountainous terrain. It is a special region with both mountainous and oceanic climates divided alongside the eastern and western regions of the Taebaek Mountain Range. As such, this paper try to quantify using ETCCDI (Expert Team on Climate Change Detection and Indices) the recent climate changes in this region.

Vulnerability Assessment of Cultivation Facility by Abnormal Weather of Climate Change (이상기후에 의한 재배시설의 취약성 평가)

  • Yoon, Seong-Tak;Lee, Yong-Ho;Hong, Sun-Hee;Kim, Myung-Hyun;Kang, Kee-Kyung;Na, Young-Eun;Oh, Young-Ju
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.264-272
    • /
    • 2013
  • Climate changes have caused not only changes in the frequency and intensity of extreme climate events, but also temperature and precipitation. The damages on agricultural production system will be increased by heavy rainfall and snow. In this study we assessed vulnerability of crop cultivation facility and animal husbandry facility by heavy rain in 232 agricultural districts. The climate data of 2000 years were used for vulnerability analysis on present status and the data derived from A1B scenario were used for the assessment in the years of 2020, 2050 and 2100, respectively. Vulnerability of local districts was evaluated by three indices such as climate exposure, sensitivity and adaptive capacity, and each index was determined from selected alternative variables. Collected data were normalized and then multiplied by weight value that was elicited in delphi investigation. Jeonla-do and Gangwon-do showed higher climate exposures than the other provinces. The higher sensitivity to abnormal weather was observed from the regions that have large-scale cultivation facility complex compared to the other regions and vulnerability to abnormal weather also was higher at these provinces. In the projected estimation based on the SRES A1B, the vulnerability of controlled agricultural facility in Korea totally increased, especially was dramatic between 2000's and 2020 year.

Evaluation of the Contribution Ratio that the Pollution Loads of the Drainage Areas Affect Soyang-lake (배수구역의 유달오염부하량이 소양호 유역에 미치는 기여율 평가)

  • Park, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5363-5368
    • /
    • 2014
  • This study examined contribution rate on the Soyangho Lake watershed based on the flow regime, and seasonal change was evaluated by calculating the delivery pollution load of the drainage area of Soyangho Lake watershed. According to the contribution rate of the drainage area by the flow regime change, Inbukcheon Creek watershed's SS and T-P entry have recorded abnormal Six month flow and a contribution rate of 46% and 51% during the Low-water flow period. At the same time, the T-P recorded a 49.5% contribution rate and a contribution rate of 48.5% during the Low-water flow period. In sequence, Inbukcheon creek's SS entry recorded a comparatively higher contribution rate than the other drainage area, which are 39.6% and 44.3% during the entire season and 53.8% for T-P, as a result of observing the contribution rate based on the seasonal changes. The T-N at the Naerincheon Creek watershed for the entire season recorded a contribution rate between 39.6% and 44.3%. Overall, Inbukcheon Creek watershed's SS and T-P entry and Naerincheon creek's T-N had a high contribution rate on contaminant spill.

A trend analysis of seasonal average temperatures over 40 years in South Korea using Mann-Kendall test and sen's slope (Mann-Kendall 비모수 검정과 Sen's slope를 이용한 최근 40년 남한지역 계절별 평균기온의 경향성 분석)

  • Jin, Dae-Hyun;Jang, Sung-Hwan;Kim, Hee-Kyung;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.439-447
    • /
    • 2021
  • Due to the frequent emergence of global abnormal climates, related studies on meteorological change is being actively proceed. However, the research on trend analysis using weather data accumulated over a long period of time was insufficient. In this study, the trend of temperature time series data accumulated from automated surface observing system (ASOS) for 40 years was analyzed by using a non-parametric analysis method. As a result of the Mann-Kendall test on the annual average temperature and seasonal average temperature time series data in South Korea, it has shown that an upward trend exists. In addition, the result of calculating the Sen's slope, which can determine the degree of tendency before and after the searched change point by applying the Pettitt test, recent data after the fluctuation point confirmed that the tendency of temperature rise was even greater.

Long Term Performance of Firm with Capital Investment for New Office Construction and Information Asymmetry (사옥신축목적 시설투자의 장기성과와 정보비대칭 현상에 대한 실증연구)

  • Lee, Jin-Hwon;Lee, Po-Sang
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • We analyze the information asymmetry in the capital market by examining the long-term performance by the insider's trading behavior in the companies that made investment announcements for the construction of the new office building. The results are summarized as follows. On average, the long-term abnormal returns on share prices of sample firms represent a significant positive value. The regression analysis confirmed that there is a statistically significant positive correlation between the factor of the change in equity of large shareholders and the long-term performance. On the other hand, negative correlation was observed between change in equity of small individual investors and long-term performance. These results mean that an insider can determine the authenticity of a manager's private intention. In other words, it supports that the insider is in a position of information superiority. In addition, it is expected to provide practical usefulness to investors in that the change in equity can be used as a predictor of long-term performance.

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Future drought risk assessment under CMIP6 GCMs scenarios

  • Thi, Huong-Nguyen;Kim, Jin-Guk;Fabian, Pamela Sofia;Kang, Dong-Won;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.305-305
    • /
    • 2022
  • A better approach for assessing meteorological drought occurrences is increasingly important in mitigating and adapting to the impacts of climate change, as well as strategies for developing early warning systems. The present study defines meteorological droughts as a period with an abnormal precipitation deficit based on monthly precipitation data of 18 gauging stations for the Han River watershed in the past (1974-2015). This study utilizes a Bayesian parameter estimation approach to analyze the effects of climate change on future drought (2025-2065) in the Han River Basin using the Coupled Model Intercomparison Project Phase 6 (CMIP6) with four bias-corrected general circulation models (GCMs) under the Shared Socioeconomic Pathway (SSP)2-4.5 scenario. Given that drought is defined by several dependent variables, the evaluation of this phenomenon should be based on multivariate analysis. Two main characteristics of drought (severity and duration) were extracted from precipitation anomalies in the past and near-future periods using the copula function. Three parameters of the Archimedean family copulas, Frank, Clayton, and Gumbel copula, were selected to fit with drought severity and duration. The results reveal that the lower parts and middle of the Han River basin have faced severe drought conditions in the near future. Also, the bivariate analysis using copula showed that, according to both indicators, the study area would experience droughts with greater severity and duration in the future as compared with the historical period.

  • PDF