• Title/Summary/Keyword: Abiraterone acetate

검색결과 3건 처리시간 0.016초

Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein

  • Kim, Jinsoo;Hwang, Seok Young;Kim, Dongbum;Kim, Minyoung;Baek, Kyeongbin;Kang, Mijeong;An, Seungchan;Gong, Junpyo;Park, Sangkyu;Kandeel, Mahmoud;Lee, Younghee;Noh, Minsoo;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.427-434
    • /
    • 2022
  • The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.

Virtual Screening, Docking and DFT Study of PRMT5

  • Subathra, S
    • 통합자연과학논문집
    • /
    • 제15권4호
    • /
    • pp.187-194
    • /
    • 2022
  • Protein Arginine Methyltransferase 5 (PRMT5), a significant member of the PRMT family, is a promising anticancer target. In this study, novel small compounds that act against the PRMT5 target are found by combining virtual screening with ChEMBL database medicines and Density Functional Theory. The ChEMBL database compounds were screened to retrieve the hit molecules, which further subjected for DFT analysis. Finally we have evaluated that ChEMBL- approved drugs such as Lifitegrast, Abiraterone acetate and Solifenacin may be potential inhibitors for PRMT5.

Is it Time to Change the Control Placebo Arms in Phase III Trials of Metastatic Castration Resistant Prostate Cancer?

  • Dogan, Mutlu;Erdem, Gokmen Umut;Zengin, Nurullah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.6167-6169
    • /
    • 2015
  • Prostate cancer is common all around the world. Hormonal therapy is the mainstay of therapy, however castration-resistant prostate cancer (CRPC) becomes a serious problem and needs further clinical trials with novel agents. Novel agents like cabazitaxel, abireterone acetate or enzalutamide are encouraging but we do not know which one is the best in metastatic CRPC. In here, treatment modalities for metastatic CRPC are discussed witha mini-review of the literature.