• Title/Summary/Keyword: Aberrant crypt foci

Search Result 41, Processing Time 0.025 seconds

CHEMOPREVENTIVE EFFECTS OF ETHYL 3-(4'-GERANYLOXY-3-METHOXYPHENYL)-2-PROPENOATE AND FERULIC ACID ON MOUSE COLON CARCINOGENESIS

  • Han, Beom-Seok;Shin, Dong-Whan;Yum, Young-Na;Cho, Jeong-Sik;Yang, Ki-Wha;Nobuo Takasuka;Tetsuyuki Takahashi;Hiroyuki Tsuda
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.74-74
    • /
    • 2002
  • Ethyl 3-(4'-geranyloxy-3-methoxyphenyl)-2-propenoate (EGMP) and ferulic acid (FA) have been shown to inhibit development of aberrant crypt foci (ACF) in the azoxymethane (AOM)-treated rat colon. In the present study, inhibitory effects of EGMP and FA on the post-initiation stage of AOM-induced colon carcinogenesis were studied in male ddY mice.(omitted)

  • PDF

EXPERIMENTAL STUDIES FOR PREVENTION OF LARGE BOWEL CARCINOGENESIS; A NEW BIOMARKER AND ITS ROLE

  • Mori, Hideki;Yamada, Yasuhiro;Hirose, Yoshinobu;Hara, Akira;Kuno, Toshiya
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.28-28
    • /
    • 2001
  • Large bowel cancer is one of the major causes of increasing world-wide cancer mortality. Our group has found a variety of naturally-occurring and synthetic compounds which have chemopreventive potentials against the occurrence of large bowel cancers using animal models. Aberrant crypt foci (ACF) which develop in rodents soon after the carcinogen exposure have been used as a biomarker for screening effective agents for cancer chemoprevention.(omitted)

  • PDF

Oral Concentrated Grape Juice Suppresses Expression of NF-kappa B, TNF-α and iNOS in Experimentally Induced Colorectal Carcinogenesis in Wistar Rats

  • de Lima Pazine Campanholo, Vanessa Maria;Silva, Roseane Mendes;Silva, Tiago Donizetti;Neto, Ricardo Artigiani;Paiotti, Ana Paula Ribeiro;Ribeiro, Daniel Araki;Forones, Nora Manoukian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.947-952
    • /
    • 2015
  • The aim of this study was to evaluate the effects of grape juice on colon carcinogenesis induced by azoxymethane (AOM) and expression of NF-kB, iNOS and TNF-${\alpha}$. Methods: Forty male Wistar rats were divided into 7 groups: G1, control; G2, 15 mg/kg AOM; G3, 1% grape juice 2 weeks before AOM; G4, 2% grape juice 2 weeks before AOM; G5, 1% grape juice 4 weeks after AOM; G6, 2% grape juice 4 weeks after AOM; G7, 2% grape juice without AOM. Histological changes and aberrant crypt foci (ACF) were studied, while RNA expression of NF-kB, TNF- and iNOS was evaluated by qPCR. Results: The number of ACF was higher in G2, and G4 presented a smaller number of crypts per focus than G5 (p=0.009) and G6. Small ACF (1-3) were more frequent in G4 compared to G2, G5 and G6 (p=0.009, p=0.009 and p=0.041, respectively). RNA expression of NF-kB was lower in G3 and G4 compared to G2 (p=0.004 and p=0.002, respectively). A positive correlation was observed between TNF-${\alpha}$ and NF-kB gene expression (p=0.002). In conclusion, the administration of 2% grape juice before AOM reduced the crypt multiplicity, attenuating carcinogenesis. Lower expression of NF-kB was observed in animals exposed to grape juice for a longer period of time, regardless of concentration.

Canola Oil Influence on Azoxymethane-induced Colon Carcinogenesis, Hypertriglyceridemia and Hyperglycemia in Kunming Mice

  • He, Xiao-Qiong;Cichello, Simon Angelo;Duan, Jia-Li;Zhou, Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2477-2483
    • /
    • 2014
  • Azoxymethane (AOM) is a potent genotoxic carcinogen which specifically induces colon cancer. Hyperlipidemia and diabetes have several influences on colon cancer development, with genetic and environmental exposure aspects. Here, we investigated plasma lipid and glucose concentrations in Kunming mice randomized into four groups; control (no AOM or oil exposure), AOM control, AOM + pork oil, and AOM + canola oil. Aberrant crypt foci (ACF), plasma cholesterol, plasma triglyceride, plasma glucose and organ weight were examined 32 weeks after AOM injection. Results revealed that AOM exposure significantly increased ACF number, plasma triglyceride and glucose level. Further, male mice displayed a much higher plasma triglyceride level than female mice in the AOM control group. Dietary fat significantly inhibited AOM-induced hypertriglyceridemia, and canola oil had stronger inhibitory effect than pork oil. AOM-induced hyperglycemia had no sex-difference and was not significantly modified by dietary fat. However, AOM itself not change plasma cholesterol level. AOM significantly increased liver and spleen weight in male mice, but decreased kidney weight in female mice. On the other hand, mice testis weight decreased when fed canola oil. AOM could induce colorectal carcinogenesis, hypertriglyceridemia and hyperglycemia in Kunming mice at the same time, with subsequent studies required to investigate their genome association.

Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays

  • Salim, Elsayed I;Hegazi, Mona M;Kang, Jin Seok;Helmy, Hager M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1023-1035
    • /
    • 2016
  • The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemically-induced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.

Pomegranate (Punica granatum) Peel Extract Efficacy as a Dietary Antioxidant against Azoxymethane-Induced Colon Cancer in Rat

  • Waly, Mostafa I.;Ali, Amanat;Guizani, Nejib;Al-Rawahi, Amani S.;Farooq, Sardar A.;Rahman, Mohammad S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4051-4055
    • /
    • 2012
  • Functional foods include antioxidant nutrients which may protect against many human chronic diseases by combating reactive oxygen species (ROS) generation. The purpose of the present study was to investigate the protective effect of pomegranate peel extract (PPE) on azoxymethane (AOM)-induced colon tumors in rats as an in vivo experimental model. Forty Sprague-Dawley rats (4 weeks old) were randomly divided into 4 groups containing 10 rats per group, and were treated with either AOM, PPE, or PPE plus AOM or injected with 0.9% physiological saline solution as a control. At 8 weeks of age, the rats in the AOM and PPE plus AOM groups were injected with 15 mg AOM/kg body weight, once a week for two weeks. After the last AOM injection, the rats were continuously fed ad-libitum their specific diets for another 6 weeks. At the end of the experiment (i.e. at the age of 4 months), all rats were killed and the colon tissues were examined microscopically for lesions suspected of being preneoplastic lesions or tumors as well as for biochemical measurement of oxidative stress indices. The results revealed a lower incidence of aberrant crypt foci in the PPE plus AOM administered group as compared to the AOM group. In addition, PPE blocked the AOM-induced impairment of biochemical indicators of oxidative stress in the examined colonic tissue homogenates. The results suggest that PPE can partially inhibit the development of colonic premalignant lesions in an AOM-induced colorectal carcinogenesis model, by abrogating oxidative stress and improving the redox status of colonic cells.

Anti-proliferative and Apoptotic Effects of Basella rubra (L.) Against 1, 2-Dimethyl Hydrazine-induced Colon Carcinogenesis in Rats

  • Kilari, Bhanu Priya;Kotakadi, Venkata Subbaiah;Penchalaneni, Josthna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • Colorectal cancer is a very prevalent diagnosed cancer. The current study was performed in order to examine the role of BRAE (Basella rubra aqueous extract) in regulating aberrant crypt foci (ACF) formation, cell proliferation and inhibition of apoptosis in a colon carcinogenesis model in male Wistar rats. Rats were randomly allocated into six groups. Group I served as control, and group II acted as a drug control administered BRAE (250mg/kg b.w.) orally for 30 weeks. Rats in group III-VI were given subcutaneous injections of DMH (25mg/kg b.w. weekly) for 15 weeks to initiate colon carcinogenesis. Those in group IV and VI were administered BRAE along with DMH injections. Rats in group V were administered with BRAE after cessation of DMH injection. After 30 weeks of experimental period colons were obtained from experimental groups and analyzed for ACF incidence, argyrophilic nucleolar organizing region-associated proteins (AgNOR) count, histopathological and immunohistochemical changes. Only in DMH exposed groups were ACF and AgNOR numbers increased. Administration of BRAE appreciably decreased the numbers of ACF and AgNOR in BRAE treated groups. Histopathological findings revealed a high level of dysplastic changes with decreased number of goblet cells found only in only DMH injected rats. Administration of BRAE in treated group rats reversed these changes. Expression markers for cell proliferation (PCNA and Ki67) were elevated in DMH treated rats, but reduced with BRAE treatement. This expression was reversed with apoptosis markers (p53 and Caspase-3). Thus the results results of the present study were found to be significant and confirmed the potential efficacy of BRAE against colon carcinogenesis.

Chemopreventive Effect of Chitosan on Rat Colon Carcinogenesis Induced by Azoxymethane (실험적 대장암 모델에서 키토산의 발암 억제효과에 관한 연구)

  • Han, Beom-Seok;Kim, Dae-Joong;Ahn, Byeong-Woo;Kim, Ki-Sok;Kang, Jin-Seok;Moon, Ji-Young;Hong, Choong-Man;Jang, Dong-Deuk
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • This study was conducted to assess the chemopreventive effects of chitosan in a rat colon carcinogenesis induced by azoxymethane (AOM). Ninety, 5-week-old, male F344 rats were divided into three groups. The animals in group 1 received subcutaneous injections of 15mg/kg AOM three times for two weeks, then were placed on powdered basal diet containing 2% chitosan for 37 weeks from weeks 3 to 40. The animals in group 2 were given AOM alone. The animals in group 3 were given 2% chitosan without prior carcinogen treatment. All animals were sacrificed at week 12 for quantitative analysis of aberrant crypt foci (ACF) and at week 40 fur analysis of tumor induction. Total numbers of ACF and AC per colon of group 1 were not significantly different from those of group 2. Tumor incidences and multiplicities of small intestine in the group 1 were significantly decreased compared with those of the group 2 (P<0.05). According to pathological diagnoses, adenocarcinoma incidence and multiplicity in the small and large intestine in the group 1 were significantly decreased compared with those of the group 2 (p<0.05). No toxic effects were observed in animals given chitosan in terms of body weights, and liver or kidney histology. These results indicate that chitosan may have a potential as chemopreventive agents of colon carcinogenesis during the postinitiation stage.

  • PDF

chemopreventive Effects of 2-(Allylthio) pyrazine

  • Kim, Nak-Doo;Kim, Sang-Geon
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • A series of organosulfur compounds were synthesized with the aim of developing chemopreventive compounds active against hepatotoxicity and chemical carcinogesis. 2-(Allylthio) prazine (2-AP) was effective in inhibiting cytochrome P450 2E1-mediated catalytic activities and protein expression, and in inducing microsomal epoxide hydrolase and major glutathione S-transferases. 2-AP reduced the hepatotoxicity caused by toxicant sand elevated cellular GSH content. Development of skin tumors, pulmonary adenoma and aberrant crypt foci in colon by various chemical carcinogens was inhibited by 2-AP pretreatment. Anticarcinogenic effects of 2-AP at the stage of initiation of tumors were also observed in the aflatoxin B1 ($AFB_1$)-induced three-step medium-term hepatocarcinogenesis model. Reduction of $AFB_1$-DNA adduct by 2-AP appeared to result from the decreased formation of $AFB_1$-8,9-epoxide via suppression of cytochrome P450, while induction of GST 2-AP increases the excretion of glutathione-conjugated $AFB_1$ . 2-AP was a radioprotective agent effective against the lethal dose of total body irradiation and reduced radiation-induced injury in association with the elevation of detoxifying gene expression. 2-AP produces reactive oxygen species in vivo, which is not mediated with the thiol-dependent production of oxidants and that NF-KB activation is not involved in the induction of the detoxifying enzymes. the mechanism of chemoprotection by 2-AP may involve inhibition of the P450-mediated metabolic activation of chemical carcinogens and enhancement of electrophilic detoxification through induction of phase II detoxification enzymes which would facilitate the clearance of activated metabolites through conjugation reaction.

  • PDF

Prospective Targets for Colon Cancer Prevention: from Basic Research, Epidemiology and Clinical Trial

  • Shingo Miyamoto;Masaru Terasaki;Rikako Ishigamori;Gen Fujii;Michihiro Mutoh
    • Journal of Digestive Cancer Research
    • /
    • v.4 no.2
    • /
    • pp.64-76
    • /
    • 2016
  • The step-wise process of colorectal carcinogenesis from aberrant crypt foci, adenoma to adenocarcinoma, is relatively suitable for chemopreventive intervention. Accumulated evidences have revealed that maintaining an undifferentiated state (stemness), inflammation, and oxidative stress play important roles in this colon carcinogenesis process. However, appropriate molecular targets that are applicable to chemopreventive intervention regarding those three factors are still unclear. In this review, we summarized appropriate molecular targets by identification and validation of the prospective targets from a comprehensive overview of data that showed colon cancer preventive effects in clinical trials, epidemiological studies and basic research. We first selected a study that used aspirin, statins and metformin from FDA approved drugs, and epigallocatechin-gallate and curcumin from natural compounds as potential chemopreventive agents against colon cancer because these agents are considered to be promising chemopreventive agents. Experimental and observational data revealed that there are common target molecules in these potential chemopreventive agents: T-cell factor/lymphoid enhancer factor (TCF/LEF), nuclear factor-&B (NF-κB) and nuclear factor-erythroid 2-related factor 2(NRF2). Moreover, these targets, TCF/LEF, NF-κB and NRF2, have been also indicated to suppress maintenance of the undifferentiated state, inflammation and oxidative stress, respectively. In the near future, novel promising candidate agents for colon cancer chemoprevention could be identified by integral evaluation of their effects on these three transcriptional activities.

  • PDF