• Title/Summary/Keyword: Abelian extension

Search Result 38, Processing Time 0.023 seconds

Inner Automorphisms of an Abelian Extension of a Quandle

  • Yongju Bae;Byeorhi Kim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.709-718
    • /
    • 2023
  • The inner automorphism groups of quandles are related to the classification problem of quandles. The inner automorphism group of a quandle is generated by inner automorphisms which are presented by columns in the operation table of the quandle. In this paper, we describe inner automorphisms of an abelian extension of a quandle by expressing columns of the operation table of the extended quandle as columns of the operation table of the original quandle. Such a description will be helpful in studying inner automorphism groups of abelian extensions of quandles.

FINITE EXTENSIONS OF WEIGHTED WORD L-DELTA GROUPS

  • Ryang, Do-Hyoung
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.353-364
    • /
    • 2008
  • The purpose of this paper is to investigate the finite extension of weighted word L-delta groups. The paper revealed that a finite extension of a weighted word L-delta group is a weighted word L-delta group, and an abelian group, in addition, is a weighted word L-delta group and simultaneously a word L-delta group.

  • PDF

ON THE TATE-SHAFAREVICH GROUPS OVER DEGREE 3 NON-GALOIS EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • Let A be an abelian variety defined over a number field K and let L be a degree 3 non-Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming that III(A/L) is finite, we compute [III(A/K)][III($A_{\varphi}/K$)]/[III(A/L)], where [X] is the order of a finite abelian group X.

ON THE TATE-SHAFAREVICH GROUPS OVER BIQUADRATIC EXTENSIONS

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Let A be an abelian variety defined over a number field K. Let L be a biquadratic extension of K with Galois group G and let III (A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Assuming III(A/L) is finite, we compute [III(A/K)]/[III(A/L)] where [X] is the order of a finite abelian group X.

REDUCTION OF ABELIAN VARIETIES AND CURVES

  • Moshe Jarden;Aharon Razon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.515-545
    • /
    • 2024
  • Consider a Noetherian domain R0 with quotient field K0. Let K be a finitely generated regular transcendental field extension of K0. We construct a Noetherian domain R with Quot(R) = K that contains R0 and embed Spec(R0) into Spec(R). Then, we prove that key properties of abelian varieties and smooth geometrically integral projective curves over K are preserved under reduction modulo p for "almost all" p ∈ Spec(R0).

TATE-SHAFAREVICH GROUPS AND SCHANUEL'S LEMMA

  • Yu, Hoseog
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.137-141
    • /
    • 2017
  • Let A be an abelian variety defined over a number field K and let L be a finite Galois extension of K. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and over L. Let $Res_{L/K}(A)$ be the restriction of scalars of A from L to K and let B be an abelian subvariety of $Res_{L/K}(A)$ defined over K. Assuming that III(A/L) is finite, we compute [III(B/K)][III(C/K)]/[III(A/L)], where [X] is the order of a finite abelian group X and the abelian variety C is defined by the exact sequence defined over K $0{\longrightarrow}B{\longrightarrow}Res_{L/K}(A){\longrightarrow}C{\longrightarrow}0$.

FIXED POING ALGEBRAS OF UHF-ALGEBRA $S^*$

  • Byun, Chang-Ho;Cho, Sung-Je;Lee, Sa-Ge
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.179-183
    • /
    • 1988
  • In this paper we study a $C^{*}$-dynamical system (A, G, .alpha.) where A is a UHF-algebra, G is a finite abelian group and .alpha. is a *-automorphic action of product type of G on A. In [2], A. Kishimoto considered the case G= $Z_{n}$, the cyclic group of order n and investigated a condition in order that the fixed point algebra $A^{\alpha}$ of A under the action .alpha. is UHF. In later N.J. Munch studied extremal tracial states on $A^{\alpha}$ by employing the method of A. Kishimoto [3], where G is a finite abelian group. Generally speaking, when G is compact (not necessarily discrete and abelian), $A^{\alpha}$ is an AF-algebra and its ideal structure was well analysed by N. Riedel [4]. Here we obtain some conditions for $A^{\alpha}$ to be UHF, where G is a finite abelian group, which is an extension of the result of A. Kishimoto.oto.

  • PDF

SUBALGEBRAS OF A q-ANALOG FOR THE VIRASORO ALGEBRA

  • Nam, Ki-Bong;Wang, Moon-Ok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.545-551
    • /
    • 2003
  • We define subalgebras ${V_q}^{mZ{\times}nZ}\;of\;V_q\;where\;V_q$ are in the paper [4]. We show that the Lie algebra ${V_q}^{mZ{\times}nZ}$ is simple and maximally abelian decomposing. We may define a Lie algebra is maximally abelian decomposing, if it has a maximally abelian decomposition of it. The F-algebra automorphism group of the Laurent extension of the quantum plane is found in the paper [4], so we find the Lie automorphism group of ${V_q}^{mZ{\times}nZ}$ in this paper.