• Title/Summary/Keyword: Ab initio methods

Search Result 78, Processing Time 0.029 seconds

Ab Initio Molecular Dynamics with Born-Oppenheimer and Extended Lagrangian Methods Using Atom Centered Basis Functions

  • Schlegel, H. Bernhard
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.837-842
    • /
    • 2003
  • In ab initio molecular dynamics, whenever information about the potential energy surface is needed for integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for both approaches are discussed.

Ab Initio and Semi-Empirical Calculations of the Tautomers of Pyrazole Derivatives (Pyrazole 유도체들의 Tautomer들에 대한 Ab Initio와 Semi-Empirical 계산)

  • Lee, Hong Gi;Yim, Seon Hwa;Jung, Sung Gyung;Kang, Sung Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.150-156
    • /
    • 1995
  • Molecular orbital calculations at the ab initio, AM1, and PM3 levels have been carried out to investigate the lactam-lactim tautomerism of 1,2,4-triazolidine-3,5- dione(1) and 1,3,4-oxa(or thia)diazolidine-2,5-dione(2, 3). Most stable tautomer in 1 compound has been calculated to be a dilactam 1a and next one is lactam-lactim 1b. The relative energies between 1a and 1b are 4.1~12.6 kcal/mol depending on computational methods. The optimized 1a structure at ab initio level is in good agreement with X-ray structure. While the stabilities of 2 tautomers are in order of 2a>2b>2c, the stabilities of 3 tautomers are dependent on methods. According to 3-21G basis set, 3a tautomer is more stable by 4.9 kcal/mol over 3b tautomer. In contrast, the heat of formation of 3a at AM1 is higher by 2.71 kcal/mol than 3b.

  • PDF

Ab Initio Study of the Conformational Isomers of Tetraethyl and Triethyl Esters of Calix[4]arene

  • Choe, Jong-In;Lee, Sang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.553-556
    • /
    • 2004
  • In this study we have performed ab initio computer simulations to investigate the conformational characteristics of the tetraethyl (1) and triethyl ester (2) of p-tert-butylcalix[4]arene. The structures of different conformational isomers for each compound have been optimized using ab initio RHF/6-31G methods. After optimization, B3LYP/6-31+G(d,p) single point calculations of the final structures are done to include the effect of electron correlation and the basis set with diffuse function and polarization function. Relative stability of tetraethyl ester (1) of p-tert-butylcalix[4]arene is in following order: cone (most stable) > partial cone > 1,3- alternate > 1,2-alternate isomer. Relative stability of triethyl ester (2) of p-tert-butylcalix[4]arene is in following order: cone (most stable) > 2-partial cone > 1-partial cone > 3-partial cone ~ 1,3-alternate ~ 1,2- alternate isomer.

Ab Initio Study of the Conformations of Tetramethoxycalix[4]arenes

  • Choe, Jong-In;Lee, Sang-Hyun;Oh, Dong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.55-58
    • /
    • 2004
  • In this study we have performed ab initio computer simulations to investigate the conformational characteristics of the tetramethoxycalix[4]arenes (1 and 2). The structures of four types (cone, partial cone, 1,2-alternate, and 1,3-alternate) of conformers for each compound have been optimized using ab initio RHF/6-31G and 6-31$G^{**}$ methods. General trends in relative stabilities of tetramethyl ether derivatives of calix[4]arene 1 and p-tert-butylcalix[4]arene 2 are similar and decrease in following order: partial cone (most stable) > cone > 1,3-alternate > 1,2-alternate. The calculated results of the most stable conformation of partial cone structure agree with the reported NMR experimental observations.

Comparison of ab initio Effective Valence Shell Hamiltonian with Semiempirical Theories of Valence: Pairing Theorem

  • Sun, Ho-Sung;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.168-170
    • /
    • 1985
  • The pairing properties of electronic structure are investigated from ab initioists' point of view. Numerical results of exact ab initio effective valence shell Hamiltonian are compared with simple semiempirical Hamiltonian calculations. In the oxygen atom case it was found that effective three-electron interaction terms break the similarity between electron-states and hole-states. With the trans-butadiene as an example the pairing theorem was studied. Even for alternant hydrocarbons, the deviation from the pairing was found to be enormous. The pairing theorem, which is usually stated for semiempirical Hamiltonians, is not valid when the exact effective Hamiltonian is considered. The present study indicates that comparisons between the pairing theorem of semiempirical methods and ab initio effective Hamiltonian give important information on the accuracy of semiempirical methods.

Ab Initio Studies of Hydrogen Bihalide Anions: Anharmonic Frequencies and Hydrogen-Bond Energies

  • Cheong, Byeong-Seo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.237-245
    • /
    • 2019
  • Hydrogen bihalide anions, $XHX^-$ (X = F, Cl, and Br) have been studied by high level ab initio methods to determine the molecular structure, vibrational frequencies, and energetics of the anions. All bihalide anions are found to be of linear and symmetric structures, and the calculated bond lengths are consistent with experimental data. The harmonic frequencies exhibit large deviations from the experimental frequencies, suggesting the vibrations of these anions are very anharmonic. Two different approaches, the VSCF and VPT2 methods, are employed to calculate the anharmonic frequencies, and the results are compared with the experimental frequencies. While the ${\nu}_1$ and ${\nu}_2$ frequencies are in reasonable agreement with the experimental values, the ${\nu}_3$ and ${\nu}_1+{\nu}_3$ frequencies still exhibit large deviations. The hydrogen-bond energies and enthalpies are calculated at various levels including the W1BD and G4 composite methods. The hydrogen-bond enthalpies calculated are in good agreement with the experimental values.

Ab initio Calculation for Photochemistry of Psoralens (소랄렌의 광화학 반응에 대한 Ab initio 계산)

  • Kim, Ja-Hong;Kwon, O-Hyung
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.244-256
    • /
    • 2009
  • The psoralen-pyrimidine base complexes resulting from interstrand cross-linking through $C_4$-cycloaddition is studied by ab initio and DFT methods. The results indicate that in the case of the molecular complex formation between psoralens and pyrimidine base, the most probable photocycloadditions are 8-MOP< >Thy, Ps< >Cyt and Ps< >Thy. The geometries of photoadducts were optimized at the HF levels and ${\Delta}{G^{\circ}}$ were calculated. The photocycloadduct was inferred to be a C4-cycloaddition product with the stereochemistry of trans-syn 8-MOP< >Thy, trans-anti Ps(3, 4)< >Cyt, trans-anti Ps(12, 13)< >Cyt, trans-syn Ps(3, 4)< >Thy, trans-syn Ps(12, 13)< >Thy, trans-anti Ps(12, 13)< >Ps(12, 13), cis syn, cis anti Thy< >(3, 4)Ps(12, 13)< >Thy.

Ab Initio Studies on Proton Affinities of Substituted Furans (치환 퓨란의 양성자 친화도에 대한 Ab Initio 연구)

  • Lee, Gab Yong;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.391-397
    • /
    • 1998
  • The geometry of furan, relevant to the binding of bis-furan lexitropsin that contains this ring to the base pair of minor groove of DNA, is optimized by semiempirical (MNDO) and ab initio (Hartree-Fock) methods. The proton affinity and electronic structure are evaluated at the 6-31G and $6-31G^{\ast}$ level of theory for the optimized geometry. The proton affinities are also studied for various substituted furans with the electrondonating and -withdrawing groups to estimate the substituent effect on the proton affinity of furans. It has been found that the electron-donating substituents increase the proton affinity of furan, whereas the electron-withdrawing substituents decrease it. This result can be explained with atomic charge and electron density at oxygen of substituted furans.

  • PDF

Ab initio Studies on d8-MCI(PH3)2(C2H2), M=Rh and Ir, Complexes

  • Kang, Sung-Kwon;Song, Jin-Soo;Moon, Jung-Hyun;Yun, Sock-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • The geometries and energies of the isomers in alkyne complexes MCl(PH3)2(η2-C2H2), M=Rh and Ir, are theoretically investigated using ab initio methods at the Hartree-Fock and up to MP4 level of theory and relativistic effective core potentials for Rh and Ir metals. The optimized structures of Rh complexes, 1-3 at MP2/ECP1 level are in good agreement with the related experimental data. The binding energies of C2H2 to d8-metal fragments are computed to be ∼55 kcal/mol. The vinylidene complexes for Rh and Ir metals are calculated to be much lower in energy than the alkyne complexes. The alkyne-vinylidene rearrangement is possible to proceed exothermically through the intermediate hydrido-alkynyl complexes, 2 or 9. Detailed comparison is given about the geometries and relative energies on Rh and Ir isomers at the various level ab initio calculations with orbital analysis.

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.179-187
    • /
    • 2013
  • We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.