• 제목/요약/키워드: AZO:H thin film

검색결과 35건 처리시간 0.029초

ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성 (Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition)

  • 송근수;김형태;유경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

Effect of oxalic acid solution to optimize texturing of the front layer of thin film sloar cells

  • 박형식;장경수;조재현;안시현;장주연;송규완;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2011
  • In this work, we deposited Al2O3doped ZnO (AZO) thin films by direct current (DC) magnetron sputtering method with a $40^{\circ}$ tilted target, for application in the front layer of thin film solar cell. Wet chemical etching behavior of AZO films was also investigated. In order to optimize textured AZO films, oxalic acid ($C_2H_2O_4$)has been used as wet etchant of AZO film. In this experiment we used 0.001% concentration of oxalic acid various etching time, that showed an anisotropy in etching texture of AZO films. Electrical resistivity, Hall mobility and carrier concentration measurements are performed by using the Hall measurement, that are $6{\times}10^{-4}{\Omega}cm$, $20{\sim}25cm^2/V-s$ and $4{\sim}6{\times}10^{20}$, respectively.

  • PDF

저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구 (Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition)

  • 김기철;송근수;김형태;유경훈;강정진;황준영;이상호;강경태;강희석;조영준
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.577-582
    • /
    • 2013
  • AZO(Aluminium-doped Zinc Oxide)는 기존의 LCD, OLED, 광센서, 유기태양전지 등의 투명전극에 널리 사용되는 ITO(Indium Tin Oxide)를 대체하기 위한 물질로 주목받고 있다. 본 연구에서는 유기태양전지의 투명 전극으로 많이 사용되는 ITO 를 대체하기 위해 원자층 증착(ALD) 공정의 저온 선택적 증착 특성을 이용하여 유연성 폴리머인 PEN 기판상에 AZO 투명전극을 직접 패턴방식으로 제조하고, 그 투명전극의 구조적, 전기적, 광학적 특성을 평가하였다. 전기적, 광학적 특성 결과들로부터 원자층 증작공정의 저온 선택적 증착 특성을 통해 형성된 AZO 투명전극의 유기태양전지로의 적용 가능성을 확인할 수 있었다.

비정질 실리콘 태양전지 후면 반사막 적용을 위한 저온 증착된 AZO 박막 특성에 관한 연구

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.315-315
    • /
    • 2016
  • The hydrogenated amorphous silicon (a-Si:H) thin film solar cells using n/Al or n/Ag/Al back reflector have low short circuit current (Jsc) due to high absorption coefficients of Al or work function difference between n-layer and the metal. In this article, we utilized aluminum doped zinc oxide (AZO) to raise the internal reflectance for the improvement of short current density (Jsc) in a-Si:H thin film solar cells. It was found that there was a slight increase in the reflectance in the long wavelength range at the process temperature of 125oC due to improved crystalline quality of the AZO back reflector. The optical band gap (Eg) and work function were affected by the temperature and so did the internal reflectance. The increased internal reflectance within the solar cell resulted in Jsc of 14.94 mA/cm2 and the efficiency of 8.84%. Jsc for the cell without back reflector was 12.29 mA/cm2.

  • PDF

rf 마그네트론 스파터법에 의해 제조된 태양전지용 ZnO:Al 박막의 전기 광학적 특성 (Electrical and Optical Characteristics of ZnO:Al Films Prepared by rf Magnetron Sputtering for Thin Film Solar Cells Application)

  • 전상원;이정철;박병옥;송진수;윤경훈
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.19-24
    • /
    • 2006
  • ZnO:Al(AZO) films prepared by rf magnetron sputtering on glass substrate and textured by post-deposition chemical etching were applied as front contact and back reflectors for ${\mu}c$-Si:H thin film solar cells. For the front transparent electrode contact, AZO films were prepared at various working pressures and substrate temperature and then were chemically etched in diluted HCl(1%). The front AZO films deposited at low working pressure(1 mTorr) and low temperature ($240^{\circ}C$) exhibited uniform and high transmittance ($\geq$80%) and excellent electrical properties. The solar cells were optimized in terms of optical and electrical properties to demonstrate a high short-circuit current.

기판 온도와 분위기 가스에 따른 AZO 박막의 구조적 및 전기적 특성 (Effect of Substrate Temperature and Gas Flow Rate of Atmosphere Gases on Structural and Electrical Properties of AZO Thin Films)

  • 홍경림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2021
  • We have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of AZO thin films for the TCO (transparent conducting oxide). For this purpose, AZO thin films were deposited by RF magnetron sputtering at room temperature and 300℃ with various H2 flow rate. Experiments were carried out while varying the hydrogen gas flow rate from 0sccm to 5.0sccm in order to see how the hydrogen gas affects the AZO thin films. AZO thin films deposited at 300℃ showed amorphous structure, whereas IZO thin films deposited at room temperature showed crystalline structure having an (222) preferential orientation. The electrical resistivity of the AZO films deposited at 300℃ was 4.388×10-3Ωcm, the lowest value. As the hydrogen gas flow rate increased, the resistivity tended to decrease.

TCO 응용을 위한 패턴된 기판위에 증착된 AZO 박막의 특성 연구 (Conformal coating of Al-doped ZnO thin film on micro-column patterned substrate for TCO)

  • 최미경;안철현;공보현;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.28-28
    • /
    • 2009
  • Fabrications of antireflection structures on solar cell were investigated to trap the light and to improve quantum efficiency. Introductions of patterned substrate or textured layer for Si solar cell were performed to prevent reflectance and to increase the path length of incoming light. However, it is difficult to deposit conformally flat electrode on perpendicular plane. ZnO is II-VI compound semiconductor and well-known wide band-gap material. It has similar electrical and optical properties as ITO, but it is nontoxic and stable. In this study, Al-doped ZnO thin films are deposited as transparent electrode by atomic layer deposition method to coat on Si substrate with micro-scale structures. The deposited AZO layer is flatted on horizontal plane as well as perpendicular one with conformal 200 nm thickness. The carrier concentration, mobility and resistivity of deposited AZO thin film on glass substrate were measured $1.4\times10^{20}cm^{-3}$, $93.3cm^2/Vs$, $4.732\times10^{-4}{\Omega}cm$ with high transmittance over 80%. The AZO films were coated with polyimide and performed selective polyimide stripping on head of column by reactive ion etching to measure resistance along columns surface. Current between the micro-columns flows onto the perpendicular plane of deposited AZO film with low resistance.

  • PDF

Enhancement of Electrical Properties on ZnO: Al Thin Film due to Hydrogen Annealing and SiO2 Coating in Damp-heat Environment

  • Chen, Hao;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권2호
    • /
    • pp.58-61
    • /
    • 2009
  • The electrical stability of ZnO: Al thin films deposited on glass substrate by the RF magnetron sputtering method have been modified by a hydrogen annealing treatment and $SiO_2$ protection layer. AZO thin films were deposited at room temperature and different RF powers of 50, 100, 150, and 200 W to optimize the AZO film growth condition. The lowest value of resistivity of $9.44{\times}10^{-4}{\Omega}cm$ was obtained at 2 mtorr, room temperature, and a power level of 150 W. Then, the AZO thin films were annealed at $250-400^{\circ}C$ for 1 h in hydrogen ambient. The minimum resistivity obtained was $8.32{\times}10^{-4}{\Omega}cm$ as-annealed at $300^{\circ}C$. The electrical properties were enhanced by the hydrogen annealing treatment. After a 72 h damp-heat treatment in harsh conditions of a water steam at $110^{\circ}C$ for four representative samples, a degradation of electrical properties was observed. The sample of hydrogen-annealed AZO thin films with $SiO_2$ protection layer showed a slight degradation ratio(17%) of electrical properties and a preferable transmittance of 90%. The electrical stability of AZO thin films had been modified by hydrogen annealing treatment and $SiO_2$ protection layer.

원자층 증착법으로 제조된 Al-doped ZnO 투명전도막의 특성평가 (Characterization of Al-doped ZnO (AZO) Transparent Conductive Thin films Grown by Atomic Layer Deposition)

  • 정현준;신웅철;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.137-141
    • /
    • 2009
  • AZO transparent conductive thin films were grown on $SiO_2$/Si and glass substrates using diethylzinc (DEZ) and trimethylaluminium (TMA) as the precursor and $H_2O$ as oxidant by atomic layer deposition. The structural, electrical, and optical properties of the AZO films were characterized as a function of film thickness at a deposition temperature of $150^{\circ}C$. The AZO films with various thicknesses show well-crystallized phases and smooth surface morphologies. The 190-nm-thick AZO films grown on Coming 1737 glass substrates exhibit rms(root mean square) roughness of 8.8 nm, electrical resistivity of $1.5{\times}10^{-3}\;{\Omega}-cm$, and an optical transmittance of 84% at 600nm wavelength. Atomic layer deposition technique for the transparent conductive oxide films is possible to apply for the deposition on flexible polymer substrates.