• Title/Summary/Keyword: AZ91D magnesium alloy

Search Result 40, Processing Time 0.025 seconds

Study on the Distillation of Magnesium Alloy Scrap (마그네슘 합금 스크랩의 진공증류에 관한 연구)

  • Wi, Chang-Hyun;Yoo, Jung-Min;Jang, Byoung-Lok;You, Byoung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • To develop a recycling process of magnesium alloy scrap, a fundamental study on the distillation of magnesium alloy melt was carried out. Melt temperature, vacuum degree and reaction time were considered as experimental variables. The amount of vaporized magnesium melt per unit surface area of melt increases with the increase of melt temperature, reaction time and vacuum degree. The vapor condensed at the tip of water cooling Cu-condenser as a form of pine cone. Magnesium and zinc were vaporized easily from the melt. However, It's difficult to separate magnesium and zinc by vacuum distillation because vapor pressure of zinc is similar to one of magnesium. The contents of aluminum, manganese and iron, etc. in residual melt increase due to the decrease of magnesium and zinc content after the distillation of magnesium alloy.

Effect of Ca and Y combined addition on the corrosion behaviors of die-cast AZ91 magnesium alloy (다이캐스트 AZ91 마그네슘합금의 부식거동에 미치는 Ca과 Y 복합 첨가의 영향)

  • Woo, Sang Kyu;Blawert, Carsten;Yi, Sang bong;Yim, Chang dong;Kim, Young min;You, Bong sun;Scharnagl, Nico;Yasakau, Kiryl
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.123.1-123.1
    • /
    • 2016
  • 마그네슘 및 마그네슘 합금은 차세대 경량 구조 재료로서 많은 각광을 받고 있지만, 상대적으로 높은 반응성과 낮은 부식저항성으로 인해 사용에 제한이 있어왔다. 최근 연구결과에 따르면, 상용으로 널리 쓰이는 AZ91 마그네슘합금에 Ca과 Y을 복합 첨가하였을 경우 마그네슘합금의 발화저항성을 크게 향상시키는 것으로 알려져 있어 마그네슘합금의 적용분야를 확대할 수 있을 것으로 많은 기대를 받고 있다. 그러나 이러한 합금이 실제적으로 적용되기 위해서는 반드시 내식성에 대한 평가와 연구가 수반되어야 하며, 이를 통해 부식거동에 대한 메커니즘을 규명함으로써 고내식 합금 개발을 위한 연구로 이어질 수 있도록 해야 한다. 따라서 본 연구에서는 기존의 AZ91D 합금과 Ca, Y이 복합 첨가된 modified AZ91D 합금 다이캐스트 주조재에 대하여 내식성을 평가 및 비교하고 부식 메커니즘을 규명하기 위한 미세조직 분석 및 부식거동 평가를 실시하였다. 본 연구결과에 따르면, AZ91D 합금 주조재에 Ca과 Y을 복합첨가한 합금은 발화저항성 뿐만 아니라 내식성도 크게 향상되는 것으로 나타났다. 이러한 내식성의 향상은 Ca과 Y의 첨가에 따른 Fe와 같은 불순물의 영향 감소 및 Ca과 Y이 포함된 이차상의 형성으로 인한 상과 기지간의 부식 전위의 차이 감소로 인한 미세 갈바닉 부식 발생의 감소 효과에 기인한 것으로 판단된다.

  • PDF

Influence of subsequent-annealing on the oxide layer of AZ91 Mg alloy prepared by plasma electrolytic oxidation (PEO 코팅 처리된 AZ91 합금의 산화층에 미치는 후-열처리의 영향)

  • Kim, Y.M.;Ko, Y.G.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.429-432
    • /
    • 2009
  • The influence of the subsequent-annealing (SA) treatment on plasma electrolytic oxidation (PEO)-treated Mg-based alloy was investigated and the dependence of the dehydration reaction on the SA temperature was also studied. For this purpose, a series of the SA treatments were carried out on the coated samples at two different temperatures, i.e. 423 and 523 K for 10 h. In contrast to the sample without SA treatment, the sample annealed at 523 K exhibited a significant difference in term of surface morphology since the MgO content in the oxide layer increased with increasing SA temperature. With increasing SA temperature, the dehydration of $Mg(OH)_2$ led to the increase in the relative amount of the MgO, which was a hard phase. From the nano-indentation results, the applied loads of the samples were seen to increase as SA temperature increased. However, the corrosion resistance of the sample annealed at 423 K was higher than that of the samples annealed at 523 K.

  • PDF

Computer Simulation for Die Filling Behavior of Semi-Solid Slurry of Mg Alloy

  • Lee, Dock-Young;Moon, Jung-Hwa;Seok, Hyun-Kwang;Kim, Sung-Bin;Kim, Ki-Bae
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to develop the semi-solid forming technology for magnesium alloy the rheological and thixotropic behavior of Mg alloy slurry with varying shear rates and cooling rates was investigated and simulated with considering the viscosity based on microstructures and processing variables. The viscosity of slurry of Mg alloy (AZ91D) in semi-solid region was exponentially increased with a solid fraction, and was decreased with increasing a shear rate. In order to analyze precisely the rheological behavior, the ANYCAST program modified with the Carreau model and the different heat transfer coefficient between the cast and mold was used to simulate the flow behavior of Mg semi-solid slurry during the injection into a casting mold in a high pressure diecasting machine. The simulated rheological behavior of Mg alloy slurry was matched well with the experimental results.

Research for Magnesium Injection Molding Process (마그네슘 사출성형 공정에 관한 연구)

  • 강태호;김인관;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.882-885
    • /
    • 2002
  • Magnesium alloys are very attractive materials for appling to the development of autemobile parts or electric goods where light weight and higher stiffness. Due to higher ratio of strength vs. weight and stillness vs. weight, various magnesium alloys are well applied in much weight saving design applications though extrusion or die-casting process. However for the requisites of higher strength and weight savings, some new fabrication processes has been and it can be realized though the aid of injection modeling technology. To obtain the parametric data base for the injection molding process, various experiments were executed for AZ91D magnesium alloy. This paper propose the optimum condition of injection temperature, first and second pressure. the process was lined-up successfully often changing the injection unit. fluid pressure system from the conventional plastic injection molding process.

  • PDF

A Study on How to Improve Magnesium Anodizing Process with High Biocompatibility

  • Kwon, Sang-jun;Hur, Jin-young;Lee, Chang-Myeon;Jang, Kwan-seop;Moon, Sung-mo;Lee, Hong-kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.185-193
    • /
    • 2015
  • Anodization of die-casted AZ91D magnesium alloy was carried out using silicate based electrolyte solution instead of fluoride based solution to improve biocompatibility of oxidized layers. The anodic layer obtained from silicate based solution has smaller size of pore and smoother surface, resulting in lower corrosion rate in simulate body solution (SBF). Effect of enhanced structural and chemical properties in oxidized layer on biocompatibility was carefully considered.

The Brightness Change of Fractured Surface in Accordance with Inclusion Contents of Magnesium Alloy (마그네슘합금내 개재물 함유량에 따른 파단면의 명도변화)

  • Kim, Hyun Sik;Ye, Dea Hee;Kang, Min Cheol;Kim, Jung Dae;Jeong, Hae Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.200-213
    • /
    • 2014
  • Pure magnesium and magnesium alloys have been applied to various kinds of industrial fields, especially automotive and electronic parts. These parts are manufactured mainly through a diecasting process. These days, magnesium ingots are used as raw material, and recycled ingots are often used for commercial purposes. But the quality of virgin magnesium and recycled ingots is not secure. Therefore, massive casting defects can occur, and some things manufactured can be damaged by these defects. This study evaluated the inclusions of virgin magnesium and recycled ingot. It also included composition analysis by spectrometer, measuring inclusion contents by SEM & EDS, and performing a brightness test on fractured surfaces. The brightness test is generally very easy and obtains results quickly, so its results have been compared with the results obtained from various test methods. From the test results, we obtained a satisfactory result in evaluating inclusion and oxide. The brightness values are lower as the inclusion contents are higher. When the brightness value is over 47 in AM50A and 44 in AZ91D, the mechanical properties are expected to be good.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

The Effects of the Distribution Aspect of Precipitate on the Corrosion Behavior of As-Cast Magnesium Alloys

  • 이충도
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.295-295
    • /
    • 1999
  • In the present study, the corrosion behavior of AZ91D as-cast alloy was investigated form the viewpoint of the distribution aspect of precipitate ($Mg_{17}Al_{12}$) and the variation of Al concentration in the Mg-rich matrix. The dendrite arm spacing (DAS) of an as-cast specimen was measured as a function of degree which describes the distribution aspect of the precipitate, and the salt spray test was conducted for various grain-sired specimens fur 20 days. The dendrite arm spacing increased as the grain size increased to about 150㎛, but a constant value is indicated when the grain size exceeds that range. Although the relationship between the corrosion rate and grain size is of a nonlinear type, the linear trend between the corrosion rate and the dendrite arm spacing is maintained for the overall range of dendrite arm spacing. Since the precipitate in the as-cast alloy is discontinuously distributed, this linear relationship means that the variation of Al-solute concentration in the Mg-rich matrix has a more potent effect than the protective action of the precipitate on the corrosion behavior of an as-cast alloy.

A Study on the Surface Treatment of Magnesium for marine engine systems (초경량성 박용기관을 위한 마그네슘 표면처리)

  • Yun, Yong-Sup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.252-257
    • /
    • 2011
  • Magnesium thin films for marine engine parts such as the engine block and the cylinder head cover etc. were prepared on the magnesium alloy(AZ91D) substrate by Thermo-electron activated Ion-plating method. The influence of gas pressure and substrate bias voltages on the crystal orientation and morphology of the films was investigated with X-ray diffraction and field emission scanning electron microscope(FE-SEM), respectively. Moreover, the effect of crystal orientation and morphology of the magnesium films on the its hardness property was investigated as well. From the results, the hardness of the films was increased in Ar gas pressure due to the grain boundary strengthening and occlusion effects.