• Title/Summary/Keyword: AWS 자료

Search Result 284, Processing Time 0.032 seconds

기온 자료와 에너지수지 방법을 이용한 지역 기준 증발산량 상세화 (Detailing of regional evapotranspiration using temperature data and energy balance method)

  • 강신욱;유완식;김경필;이용신
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.118-118
    • /
    • 2023
  • 물순환 과정의 구성요소 중 하나인 증발산(증발과 증산)은 각종 수자원시설물의 운영관리, 수자원계획 수립, 농업용 시설의 개발 및 운영관리 등에 필요한 매우 중요한 요소이다. 한편, 기후변화 등으로 '14~'19년 장기간 가뭄, '17년 가뭄상황에서도 태풍 '차바'에 의한 국지적 홍수, '20년 역대 최장기간 장마에 의한 대규모 홍수, '22년 태풍 '힌남노' 이후 남부지역 극심한 가뭄 등 가뭄과 홍수가 반복되어 물관리 여건이 매우 어려운 상황이다. 이러한 홍수/가뭄에 효과적으로 대응하기 위해 강우-유출 모형을 사용한다. 신뢰적인 예측결과를 얻기 위해서는 상세하고 정밀한 증발산량 추정이 필요하다. Penman-Monteith(PM) 기법으로 기준 증발산량을 산정하기 위해서는 최고·최저기온, 이슬점온도, 풍속, 일조시간 등의 기상자료가 필요하다. 이러한 자료는 전국 95개 ASOS 지점에만 얻을 수 있다. 계산된 95개 지점의 기준 증발산량은 티센망 등 방법으로 공간평균하여 활용한다. 95개 지점 자료만으로는 지역적 기상 특성을 반영하여 기준 증발산량을 산정하는데 한계가 있으며, 결국 강우-유출분석의 신뢰도 저하로 귀결된다. 본 연구는 기상청 ASOS 지점 외 AWS 590개 지점을 추가하여 기준 증발산량을 산정하여 공간적으로 상세화하였다. ASOS 지점들에 대해 PM 기법과 Hargreaves(HS) 기법으로 22년간의 일단위 기준 증발산량을 각각 계산하였다. 이들의 상관계수는 평균 0.85로 매우 높아, HS 기법으로 산정된 AWS 지점 결과의 추가사용이 적정하였다. 기온만을 사용하는 HS 기법, PM과 HS의 상관성 및 풍속을 반영한 2가지 보정 HS 기법으로 기준 증발산량을 계산하여 비교·분석하였다. 보정된 HS의 결과가 기존 HS 기법에 비해 오차가 적고, 자료의 편향성이 줄어드는 등 더 좋은 결과를 나타내었다. 따라서, 각종 수문분석에 보정 HS 기법을 AWS 지점에 확대·적용하고, ASOS 관측소의 PM 기법과 병행해 상세화하여 활용하면 수문분석의 신뢰성을 더욱 높일 수 있을 것이다.

  • PDF

마이크로웨이브 강수량을 이용한 MTSAT-1R 위성의 강우강도 추정 (Estimation of Rainfall Intensity for MTSAT-1R Data using Microwave Rainfall)

  • 지준범;이규태
    • 대한원격탐사학회지
    • /
    • 제26권5호
    • /
    • pp.511-525
    • /
    • 2010
  • MTSAT-1R의 적외 채널 밝기온도와 마이크로웨이브 강수량 자료를 이용하여 강수량을 추정하였다. 정지위성의 밝기온도와 다양한 마이크로웨이브(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) 강수량의 시공간일지 자료생성 및 관계성을 분석하여 MTSAT-1R 밝기온도와 마이크로웨이브 강수량의 조견표를 작성하였으며 밝기온도에 적용하여 강수량을 산출하였다. 산출 강수량은 지상 AWS 및 TRMM 위성자료를 이용하여 검증하였다. TRMM 2A12(TMI) 방법에 산출 강수량은 AWS 및 TRMM3B42 강수량 검증에서 상관계수는 0.38과 0.61, RMSE는 5.81과 2.44 mm/hr, PC는 0.79와 0.84 그리고 POD는 0.65와 0.87로 가장 높은 결과를 보였다. 전체적으로 위성을 이용한 강수량 산출에서 AWS 강수량과 비교하여 5 mm/hr 이상 그리고 TRMM3B42 강수량과 비교하여 2 mm/hr 이상 많은 강수를 추정하였다. 강수량의 검증 결과는 TRMM 2A12, AMSRE, SSM/I, AMSU-B 및 SSMIS 계열 방법순서로 상관성 등의 대부분 검증에서 높은 결과를 나타내었다.

인공위성 자료를 이용한 유역의 면적평균강우량 예측 (Forecasting on Areal Precipitation Estimation using Satellite Data)

  • 한건연;김광섭;최혁준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.904-907
    • /
    • 2005
  • 본 연구에서는 강우량의 실측치인 자동기상관측소(AWS) 자료와 현재의 대기상태인 인공위성(GMS-5호) 자료를 입력자료로 하여 현재부터 3시간 선행시간까지의 면적평균강우량을 예측할 수 있도록 강우예측 신경망 모형을 개발하였으며, 2002년 8월 집중호우시 남강댐 유역에 적용하였다. 신경망 모형의 학습을 위해서 $1998\~2001$$6\~9$월과 2002년 6, 7월의 강우사상과 적외선 자료가 사용되었고, 학습이 종료되면 예측기간(2002년 8월 $6\~16$일)동안의 강우예측이 수행되었다. 신경망 모형의 학습단계에서는 자료들간의 비선형 상관관계를 나타내는데 적합한 역전파 알고리즘 학습방법 중 모멘텀법을 사용하였으며, 신경망 모형의 출력값은 현재부터 3시간 후까지의 면적평균강우량을 예측할 수 있도록 구성하였다. 예측된 면적평균강우량은 실제 관측된 강우량의 패턴은 잘 따르고 있었지만 첨두치를 과소평가하는 경향이 나타났다. 본 연구에서 개발된 신경망 모형은 관측된 강우자료의 품질과 패턴이 모형의 정확성에 미치는 영향이 절대적인 기존의 신경망 모형과 차별화하여, 현재의 대기상태를 나타내는 인공위성 자료를 추가함으로써 보다 정확한 강우량 예측이 가능하도록 하였다.

  • PDF

통계학적 가능최대강수량의 재현기간 추정 (Estimation of the return period of statistical method for probable maximum precipitation)

  • 김상단;심인경;이옥정
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.180-180
    • /
    • 2018
  • 가능최대강수량(PMP)은 대규모 수공구조물의 설계 시 기준이 되는 강수량으로, 최근 대규모 거대재난에 대비한 대피계획수립에 PMP를 활용하려는 움직임이 있으며 PMP에 대한 국내 연구가 활발히 수행되고 있다. PMP를 추정하기 위해 Hershfield의 통계적 방법에 대한 간단한 대안이 제안되었다. PMP는 물리적인 강우량 상한계로, 확률론적 개념과는 모순적이다. 또한, Hershfield의 PMP는 연 최대 시계열 평균의 선형함수로 주어지는 모양 매개변수를 가지는 GEV 분포의 약 60,000년 빈도임이 밝혀졌다. 따라서 본 연구에서는 Hershfield의 방법을 확률론적으로 해석하는 것이 바람직할 것으로 판단하였고, 기상청 ASOS 및 AWS 자료를 이용하여 우리나라 각 지점자료 중 10년 이상의 자료를 사용하여 Hershfield 방법을 적용하여 PMP를 산정하였다. 각 지점의 빈도계수를 구하여 우리나라 자료에 적합한 확률분포의 형태를 적용하였고, 분포형의 매개변수 값을 추정하였다. 또한, Hershfield의 빈도계수와, 우리나라 자료에 해당하는 빈도계수가 몇 년 빈도로 계산되는지 각각 확인해 보았다. ASOS 및 AWS 자료를 이용하여 연 최대 강수량 시계열 평균과 모양 매개변수의 관계 공식 또한 구성하였다. 본 연구의 방법을 검증하기 위하여 우리나라에서 제일 오래된 자료(57년)인 서울지점 자료를 이용하여 경험적인 분포함수와 본 연구에서 제안하고 있는 방법을 비롯한 다양한 방법을 통하여 구한 분포함수를 비교하여 도시하였다.

  • PDF

AWS 강우정보의 실시간 유량예측능력 평가 (Validation of Real-Time River Flow Forecast Using AWS Rainfall Data)

  • 이병주;최재천;최영진;배덕효
    • 한국수자원학회논문집
    • /
    • 제45권6호
    • /
    • pp.607-616
    • /
    • 2012
  • 본 연구는 AWS 관측강우정보를 이용하여 실시간 유량예측을 수행할 경우 적용가능한 예측선행시간 및 정확도를 평가하고자 하는데 그 목적이 있다. 이를 위해 남한강 상류유역을 대상유역으로 선정하였으며 2006~2009 홍수기간에 대해 SURF 모형을 구축하였다. 관측유량 자료동화 수행 유무에 따른 모의유량은 관측유량을 잘 모의하며 유효성지수를 이용하여 자료동화 효과를 분석한 결과에서 충주댐 32.08%, 달천 51.53%, 횡성 39.70%, 여주 18.23%가 개선된 것으로 나타났다. 첨두유량 발생시간 이전 가상의 현재시점까지의 AWS 관측강우정보를 이용하여 유량예측 적용성을 평가한 결과 허용오차 20% 범위 내에서 첨두유량은 충주 11시간, 달천 2시간, 횡성 3시간, 여주 5시간, 유출용적은 충주 13시간, 달천 2시간, 횡성 4시간, 여주 9시간 이내에서 예측이 가능한 것으로 나타났다. 따라서 유역의 지체효과로 인해 관측강우만을 이용하여 적정 예측시간에 대해서 실시간 첨두유량 예측이 가능할 것으로 판단된다.

다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가 (Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1711-1720
    • /
    • 2020
  • 최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.

북한지역 수자원 감시예측을 위한 수문기상정보 활용기술개발 (Development of Hydrometeorological Information and Application Technology for Monitoring Water Resources in North Korea)

  • 김지인;이성진;강재원;김규문;서애숙
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.531-535
    • /
    • 2015
  • 본 연구에서는 한반도 관측 공백지역인 북한지역에 대하여 레이더와 위성 원격탐사자료를 활용하여 강수량과 토양수분 등 수문기상정보를 생산 및 검증하고 효율적인 수문 모니터링 및 수문 기상 재해 감시와 평가 방안을 수립하고자 한다. 또한, 북한지역의 수문 기상 정보 수집 및 통합 DB를 마련하고 북한 수문기상 포털시스템을 구축함으로써 부처 간 자료를 공유할 수 있는 매개체를 마련하여 일관된 정책 수립과 효율적인 물관리를 도모하고자 한다. WPMM(Window Probability Matching Method)방법을 기반으로 구성된 RAD-RAR(Rain rate system) 산정 알고리즘(Rosenfeld et al., 1993)을 활용하여 산출된 합성 강우장 데이터의 정확성을 비교 분석하기 위해 접경지역 AWS 강수량과 세계기상통신망(GTS)기반 강수량을 산출하여 각각 레이더 강수량과 검증분석을 실시하였다. 연구기간은 2012년과 2013년 여름철 기간 중 5개의 기간을 선별하였다. 연구 기간 동안의 RAR 합성 강우장 데이터를 이용하여, 기간 중 1시간 동안 누적된 강수량을 산출하고 접경지역 AWS 강수량과 비교하였고 12시간 누적 강수량을 산출하여 GTS 강수량과 비교 분석을 실시하였다. 전반적으로 레이더 강수량에 비해 AWS 강수량이 더 높게 나타났으며 마찬가지로 레이더 강수량과 GTS 강수량의 비를 통해 레이더 자료가 상대적으로 과소추정되고 있음을 확인 할 수 있었다. 미항공우주국(NASA)과 일본항공우주국(JAXA)을 중심으로 진행된 GPM(Global Precipitation Measurement)미션은 한 개의 핵심위성과 마이크로파 복사계를 탑재한 10여개의 보조위성으로 구성되어 있으며, 매 3시간 간격의 전구 강수량 자료 생산에 목적이 있다. 이는 홈페이지를 통해 Level 1, 2, 3의 GPM 데이터를 배포하고 있다. 특히 Level 2 데이터는 언급된 3시간 간격의 전구 강수량 데이터를 제공한다. 이 경우 복사량을 강수량으로 변환하는 번거로움을 덜 수 있으며 NASA가 제공하는 Panoply라는 프로그램을 이용하여 한반도 강수 자료 가시화가 가능하다.

  • PDF