물순환 과정의 구성요소 중 하나인 증발산(증발과 증산)은 각종 수자원시설물의 운영관리, 수자원계획 수립, 농업용 시설의 개발 및 운영관리 등에 필요한 매우 중요한 요소이다. 한편, 기후변화 등으로 '14~'19년 장기간 가뭄, '17년 가뭄상황에서도 태풍 '차바'에 의한 국지적 홍수, '20년 역대 최장기간 장마에 의한 대규모 홍수, '22년 태풍 '힌남노' 이후 남부지역 극심한 가뭄 등 가뭄과 홍수가 반복되어 물관리 여건이 매우 어려운 상황이다. 이러한 홍수/가뭄에 효과적으로 대응하기 위해 강우-유출 모형을 사용한다. 신뢰적인 예측결과를 얻기 위해서는 상세하고 정밀한 증발산량 추정이 필요하다. Penman-Monteith(PM) 기법으로 기준 증발산량을 산정하기 위해서는 최고·최저기온, 이슬점온도, 풍속, 일조시간 등의 기상자료가 필요하다. 이러한 자료는 전국 95개 ASOS 지점에만 얻을 수 있다. 계산된 95개 지점의 기준 증발산량은 티센망 등 방법으로 공간평균하여 활용한다. 95개 지점 자료만으로는 지역적 기상 특성을 반영하여 기준 증발산량을 산정하는데 한계가 있으며, 결국 강우-유출분석의 신뢰도 저하로 귀결된다. 본 연구는 기상청 ASOS 지점 외 AWS 590개 지점을 추가하여 기준 증발산량을 산정하여 공간적으로 상세화하였다. ASOS 지점들에 대해 PM 기법과 Hargreaves(HS) 기법으로 22년간의 일단위 기준 증발산량을 각각 계산하였다. 이들의 상관계수는 평균 0.85로 매우 높아, HS 기법으로 산정된 AWS 지점 결과의 추가사용이 적정하였다. 기온만을 사용하는 HS 기법, PM과 HS의 상관성 및 풍속을 반영한 2가지 보정 HS 기법으로 기준 증발산량을 계산하여 비교·분석하였다. 보정된 HS의 결과가 기존 HS 기법에 비해 오차가 적고, 자료의 편향성이 줄어드는 등 더 좋은 결과를 나타내었다. 따라서, 각종 수문분석에 보정 HS 기법을 AWS 지점에 확대·적용하고, ASOS 관측소의 PM 기법과 병행해 상세화하여 활용하면 수문분석의 신뢰성을 더욱 높일 수 있을 것이다.
MTSAT-1R의 적외 채널 밝기온도와 마이크로웨이브 강수량 자료를 이용하여 강수량을 추정하였다. 정지위성의 밝기온도와 다양한 마이크로웨이브(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) 강수량의 시공간일지 자료생성 및 관계성을 분석하여 MTSAT-1R 밝기온도와 마이크로웨이브 강수량의 조견표를 작성하였으며 밝기온도에 적용하여 강수량을 산출하였다. 산출 강수량은 지상 AWS 및 TRMM 위성자료를 이용하여 검증하였다. TRMM 2A12(TMI) 방법에 산출 강수량은 AWS 및 TRMM3B42 강수량 검증에서 상관계수는 0.38과 0.61, RMSE는 5.81과 2.44 mm/hr, PC는 0.79와 0.84 그리고 POD는 0.65와 0.87로 가장 높은 결과를 보였다. 전체적으로 위성을 이용한 강수량 산출에서 AWS 강수량과 비교하여 5 mm/hr 이상 그리고 TRMM3B42 강수량과 비교하여 2 mm/hr 이상 많은 강수를 추정하였다. 강수량의 검증 결과는 TRMM 2A12, AMSRE, SSM/I, AMSU-B 및 SSMIS 계열 방법순서로 상관성 등의 대부분 검증에서 높은 결과를 나타내었다.
본 연구에서는 강우량의 실측치인 자동기상관측소(AWS) 자료와 현재의 대기상태인 인공위성(GMS-5호) 자료를 입력자료로 하여 현재부터 3시간 선행시간까지의 면적평균강우량을 예측할 수 있도록 강우예측 신경망 모형을 개발하였으며, 2002년 8월 집중호우시 남강댐 유역에 적용하였다. 신경망 모형의 학습을 위해서 $1998\~2001$년 $6\~9$월과 2002년 6, 7월의 강우사상과 적외선 자료가 사용되었고, 학습이 종료되면 예측기간(2002년 8월 $6\~16$일)동안의 강우예측이 수행되었다. 신경망 모형의 학습단계에서는 자료들간의 비선형 상관관계를 나타내는데 적합한 역전파 알고리즘 학습방법 중 모멘텀법을 사용하였으며, 신경망 모형의 출력값은 현재부터 3시간 후까지의 면적평균강우량을 예측할 수 있도록 구성하였다. 예측된 면적평균강우량은 실제 관측된 강우량의 패턴은 잘 따르고 있었지만 첨두치를 과소평가하는 경향이 나타났다. 본 연구에서 개발된 신경망 모형은 관측된 강우자료의 품질과 패턴이 모형의 정확성에 미치는 영향이 절대적인 기존의 신경망 모형과 차별화하여, 현재의 대기상태를 나타내는 인공위성 자료를 추가함으로써 보다 정확한 강우량 예측이 가능하도록 하였다.
가능최대강수량(PMP)은 대규모 수공구조물의 설계 시 기준이 되는 강수량으로, 최근 대규모 거대재난에 대비한 대피계획수립에 PMP를 활용하려는 움직임이 있으며 PMP에 대한 국내 연구가 활발히 수행되고 있다. PMP를 추정하기 위해 Hershfield의 통계적 방법에 대한 간단한 대안이 제안되었다. PMP는 물리적인 강우량 상한계로, 확률론적 개념과는 모순적이다. 또한, Hershfield의 PMP는 연 최대 시계열 평균의 선형함수로 주어지는 모양 매개변수를 가지는 GEV 분포의 약 60,000년 빈도임이 밝혀졌다. 따라서 본 연구에서는 Hershfield의 방법을 확률론적으로 해석하는 것이 바람직할 것으로 판단하였고, 기상청 ASOS 및 AWS 자료를 이용하여 우리나라 각 지점자료 중 10년 이상의 자료를 사용하여 Hershfield 방법을 적용하여 PMP를 산정하였다. 각 지점의 빈도계수를 구하여 우리나라 자료에 적합한 확률분포의 형태를 적용하였고, 분포형의 매개변수 값을 추정하였다. 또한, Hershfield의 빈도계수와, 우리나라 자료에 해당하는 빈도계수가 몇 년 빈도로 계산되는지 각각 확인해 보았다. ASOS 및 AWS 자료를 이용하여 연 최대 강수량 시계열 평균과 모양 매개변수의 관계 공식 또한 구성하였다. 본 연구의 방법을 검증하기 위하여 우리나라에서 제일 오래된 자료(57년)인 서울지점 자료를 이용하여 경험적인 분포함수와 본 연구에서 제안하고 있는 방법을 비롯한 다양한 방법을 통하여 구한 분포함수를 비교하여 도시하였다.
본 연구는 AWS 관측강우정보를 이용하여 실시간 유량예측을 수행할 경우 적용가능한 예측선행시간 및 정확도를 평가하고자 하는데 그 목적이 있다. 이를 위해 남한강 상류유역을 대상유역으로 선정하였으며 2006~2009 홍수기간에 대해 SURF 모형을 구축하였다. 관측유량 자료동화 수행 유무에 따른 모의유량은 관측유량을 잘 모의하며 유효성지수를 이용하여 자료동화 효과를 분석한 결과에서 충주댐 32.08%, 달천 51.53%, 횡성 39.70%, 여주 18.23%가 개선된 것으로 나타났다. 첨두유량 발생시간 이전 가상의 현재시점까지의 AWS 관측강우정보를 이용하여 유량예측 적용성을 평가한 결과 허용오차 20% 범위 내에서 첨두유량은 충주 11시간, 달천 2시간, 횡성 3시간, 여주 5시간, 유출용적은 충주 13시간, 달천 2시간, 횡성 4시간, 여주 9시간 이내에서 예측이 가능한 것으로 나타났다. 따라서 유역의 지체효과로 인해 관측강우만을 이용하여 적정 예측시간에 대해서 실시간 첨두유량 예측이 가능할 것으로 판단된다.
최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.
본 연구에서는 한반도 관측 공백지역인 북한지역에 대하여 레이더와 위성 원격탐사자료를 활용하여 강수량과 토양수분 등 수문기상정보를 생산 및 검증하고 효율적인 수문 모니터링 및 수문 기상 재해 감시와 평가 방안을 수립하고자 한다. 또한, 북한지역의 수문 기상 정보 수집 및 통합 DB를 마련하고 북한 수문기상 포털시스템을 구축함으로써 부처 간 자료를 공유할 수 있는 매개체를 마련하여 일관된 정책 수립과 효율적인 물관리를 도모하고자 한다. WPMM(Window Probability Matching Method)방법을 기반으로 구성된 RAD-RAR(Rain rate system) 산정 알고리즘(Rosenfeld et al., 1993)을 활용하여 산출된 합성 강우장 데이터의 정확성을 비교 분석하기 위해 접경지역 AWS 강수량과 세계기상통신망(GTS)기반 강수량을 산출하여 각각 레이더 강수량과 검증분석을 실시하였다. 연구기간은 2012년과 2013년 여름철 기간 중 5개의 기간을 선별하였다. 연구 기간 동안의 RAR 합성 강우장 데이터를 이용하여, 기간 중 1시간 동안 누적된 강수량을 산출하고 접경지역 AWS 강수량과 비교하였고 12시간 누적 강수량을 산출하여 GTS 강수량과 비교 분석을 실시하였다. 전반적으로 레이더 강수량에 비해 AWS 강수량이 더 높게 나타났으며 마찬가지로 레이더 강수량과 GTS 강수량의 비를 통해 레이더 자료가 상대적으로 과소추정되고 있음을 확인 할 수 있었다. 미항공우주국(NASA)과 일본항공우주국(JAXA)을 중심으로 진행된 GPM(Global Precipitation Measurement)미션은 한 개의 핵심위성과 마이크로파 복사계를 탑재한 10여개의 보조위성으로 구성되어 있으며, 매 3시간 간격의 전구 강수량 자료 생산에 목적이 있다. 이는 홈페이지를 통해 Level 1, 2, 3의 GPM 데이터를 배포하고 있다. 특히 Level 2 데이터는 언급된 3시간 간격의 전구 강수량 데이터를 제공한다. 이 경우 복사량을 강수량으로 변환하는 번거로움을 덜 수 있으며 NASA가 제공하는 Panoply라는 프로그램을 이용하여 한반도 강수 자료 가시화가 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.