• Title/Summary/Keyword: AWS 자료

Search Result 284, Processing Time 0.026 seconds

Construction and evaluation of the radar-AWS accumulated rainfall calculation system (레이더-AWS 누적강수량 산출 시스템 구축 및 평가)

  • Ko, Hye-Young;Nam, Kyung-Yeub;Chang, Ki-Ho;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.94-94
    • /
    • 2011
  • 최근에 산악지역에서의 국지성 강우에 의한 사고 발생이 증가하고 있고, 2009년에는 북한의 무단 댐방류로 인해 인명피해가 발생함에 따라서 산악이나 북한 지역과 같은 지역의 모니터링이 필요하게 되었으며, 강수량의 기후학적 분포의 특성과 같은 장기적인 강수량 정보가 필요하게 되었다. 레이더는 넓은 영역에 대해서 시 공간적으로 고해상도의 자료를 제공할 수 있기 때문에 국지 규모의 단시간 강수량 정보를 제공하는데 유용하다. 국립기상연구소(National Institute of Meteorological Research; NIMR)는 기존의 층운형 Z-R 관계식(Z=$200R^{1.6}$, Marshall-Palmer, 1948)을 이용한 레이더 강우강도 산출에서 과소추정 문제를 개선하기 위해 레이더-AWS 강우강도(Radar-AWS Rain rate; RAR) 산출 시스템을 개발하여 현재 운영하고 있다. RAR 산출 알고리즘은 각 레이더에 대해서 레이더 강우강도와 지상 AWS 우량계 자료를 비교하여 실시간으로 Z-R 관계식을 산출하여, 레이더 반사도를 강우강도로 변환하고, 이를 합성하여 한반도 영역에 대해서 강우강도 정보를 제공한다. 2010년에는 RAR 자료와 지상 AWS 우량계 자료를 이용하여 레이더-AWS 누적강수량을 산출하는 시스템을 구축하였으며, 현재 시험운영 중에 있다. 본 연구에서는 레이더-AWS 누적강수량의 정확도를 평가하기 위해서 2009년에 대해 레이더-AWS 누적강수량 자료와 지상 AWS 누적강수량 자료에 대해 RMSE, Bias 등의 통계값을 산출하였으며, 북한 지역에 대한 적용가능성을 분석하기 위해서 레이더 관측 반경 내의 북한 지역의 GTS 지점 자료를 이용하여 사례 분석하였다. 본 연구는 레이더 자료를 이용한 지상 관측 공백지역의 강수량에 대한 모니터링을 통하여 이러한 지역의 사고에 대비할 수 있고, 기후학적인 강수량 정보 제공 및 향후 유역별 레이더 면적강수지도 시험판 개발을 통하여 수문 기상 분야에 적용하여 효과적인 물관리에 기여할 수 있을 것으로 사료된다.

  • PDF

A Method for Correcting Air-Pressure Data Collected by Mini-AWS (소형 자동기상관측장비(Mini-AWS) 기압자료 보정 기법)

  • Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.

An Evaluation of Water Supply Reliability Using AWS Data in Korea (AWS 자료를 이용한 우리나라의 물 공급 안전도 평가)

  • Moon, Jang-Won;Choi, Si-Jung;Kang, Seong-Kyu;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.743-753
    • /
    • 2012
  • AWS data can be used effectively to understand the rainfall characteristics in Korea. In spite of this advantage, AWS data have been used restrictively in flood control analysis and the study on water use analysis such as water balance assessment is very insufficient. In this study, AWS data are used to analyze spatial rainfall characteristics quantitatively and water balance assessment is performed based on AWS data. Water balance assessment is carried out from year 2002 to year 2010 considering water supply networks in Korea. The analysis shows that year 2009 is the driest year during 9 years (2002~2010) and the regions with low level water supply reliability are concentrated in the west coast of Jeonnam and the upper region of the Nakdong River. As a result, the regions that have a lack of available water resources such as the coastal and insular areas are vulnerable to droughts. Therefore, regional water supply and management plans are urgently needed. Additionally, AWS data, which consider rainfall characteristics of the coastal and insular areas, can be useful in water balance assessment.

Real Time Web Display and Data analysis using Observed Data of Automatic Weather System (AWS) (AWS 관측 데이터를 이용한 실시간 웹 디스플레이 및 자료 처리)

  • Kim, Hyun-Jin;Jung, Seung-Hyun;Lee, Si-Woo;Min, Kyung-Duck
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.597-601
    • /
    • 2002
  • Automatic Weather Systems (AWS) were placed at many educational as well as governmental institutes for the measurement of weather in Korea. However, weather information from AWS was not used as a real time system because of the complexity of the web display. For the web display ;ud automatic store of weather data to be used as a real time system, KNU Weather Now-V1.0 was developed. The system is very simple but useful for students and other users. Thus, everybody can use stored weather data and can process the data easily. This study focuses on the development of the system and the educational usage of AWS.

Efficient use of AWS data for determining the Disaster Prevention Performance Objectives (방재성능목표 설정의 AWS 자료 활용방안)

  • Kong, So Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.221-221
    • /
    • 2022
  • 방재성능목표란 홍수, 호우 등으로부터 재해를 예방하기 위한 방재정책 등에 적용하기 위하여 처리 가능한 시간당 강우량 및 연속강우량의 목표로, 각 지자체별로 지역특성 및 경제여건 등을 고려하여 지역별 방재성능목표를 설정한다. 지역별 방재성능목표 기준을 설정하기 위해 전국을 168개 티센망으로 분류하고 69개 지점 확률강우량을 활용하여 지방자치단체별 확률강우량을 산정하고, 지방자치단체별 티센면적 비율을 감안하여 각 지자체별 방재성능목표 설정 기준을 마련한다. 이때 확률강우량 산정에 기상청에서 제공하는 종관기상관측(ASOS) 자료를 이용하는데, 종관기상관측(ASOS, Automated Synoptic Observing System)이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측으로, 종관규모는 일기도에 표현되어 있는 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 해당 지역의 현재 기상 실시간 제공 및 기상예보에 활용한다. 그러나 ASOS 자료로 산정한 확률강우량을 토대로 설정한 지역별 방재성능목표는 지배관측소개소 및 면적 비율에 따라 강우량이 실제 해당 지역에 내린 강우량에 비해 작거나 크게 산정되어 실제 강우량을 반영하지 못하는 문제가 발생한다. 이에 지진·태풍·홍수·가뭄 등 기상현상에 따른 자연재해를 막기 위해 실시하는 지상관측인 방재성능관측(AWS, Automatic Weather System)을 1997년부터 약 510여개 지점에 설치하여 기상관측자료를 구축하고 있으나, 관측자료가 30년 미만이므로 자료의 일관성 및 신뢰도 확보 등의 문제로 이용하고 있지 않다. 실제로 ASOS 관측소와 AWS 관측소의 시간 강우량 최댓값 차이가 큼에도 불구하고 행안부는 지역별 방재성능목표 수립을 위한 강우량 산정에서 AWS 관측소의 기록은 반영하지 않고 ASOS 관측소 기록만 적용하여 실제 해당 지역의 강우량을 반영하는 방재 대책을 수립하지 못하는 실정이다. 따라서 소규모 유역 및 재해영향평가 등의 경우 인근 지역에 AWS 관측소가 있을 경우, 해당지역의 기상 특성을 대변하는 자료로 보유관측년수가 30년 이상인 AWS 자료의 적극적인 활용이 필요할 것으로 판단된다.

  • PDF

Availability of AWS data from KMA for real-time river flow forecast (실시간 하천유량 예측을 위한 기상청 AWS 자료의 활용성 평가)

  • Lee, Byong-Ju;Chang, Ki-Ho;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.131-131
    • /
    • 2011
  • 기후변화로 인한 기상이변 현상이 빈번하게 발생하면서 홍수와 같은 자연재해의 피해규모가 증가하고 있다. 이를 극복하기 위해 최근에는 구조적 대책뿐만 아니라 홍수예측시스템과 같은 비구조적 대책에도 많은 관심과 연구가 이루어지고 있다. 통상 홍수예측을 위해서는 예측강우의 정확도가 중요하게 부각되지만 중규모 이상의 유역에서는 수 시간의 지체시간 효과로 인해 AWS 실황강우만으로도 어느정도 선행시간에 대해서 하천유량예측이 가능하다고 할 수 있다. 본 연구에서는 기상청 AWS 실황강우를 이용하여 하천유량을 예측할 경우 어느정도 선행시간과 정확도를 확보할 수 있는지에 대해서 분석하고자 한다. 분석을 위한 시단위 강우자료와 기상자료는 각각 AWS와 ASOS 자료를 이용하였다. 또한 하천유량 모의를 위한 강우-유출모형으로는 SURF 모델(Sejong University River Forecast Model)을 이용하였다. 이 모형은 저류함수모형 기반의 연속형 강우-유출모형으로 미래에 대한 유출모의결과의 정확도를 향상시키기 위해 앙상블 칼만필터링 기법을 연계한 모형이다. 그림 1은 충주댐유역에 대해서 2009.7.8~17일(240시간)에 대해서 관측유량 자료동화 전후의 결과를 나타낸 것이다. 현시점을 100, 105, 110, 115시간으로 가정하고 미래기간에 대해서는 관측강우를 0으로 가정했을 때 대략 첨두유량 발생 5시간 전에 예측된 모의유량이 관측유량과 거의 일치함을 확인할 수 있다. 따라서 실황강우와 관측유량 자료동화 기법을 연계할 경우 수 시간의 선행시간에 대해서 유량예측이 가능한 것으로 판단된다.

  • PDF

Rainfall Estimation Using TRMM-PR/VIRS and GMS Data (TRMM-PR/VIRS와 GMS 자료를 이용한 강수량 추정에 관한 연구)

  • 김영섭;박경원
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.319-326
    • /
    • 2002
  • Rainfall estimation was conducted based on TRMM-PR/VIES and GMS data. AWS rainfall data were used for various validation. General procedure is as follows; 1) Z-R relationship was made by the comparison of TRMM-PR and AWS data. 2) new algorithm was developed by the estimates from Z-R equation and TBB of VIRS. 3) rainfall was estimated through the substitution of GMS data for TBB of VIRS in the newly developed algorithm. Z-R relationship based on TRMM is $Z=303R^{0.72}$ with correlation coefficient 0.57. The newly developed algorithm is shown as correlation coefficient 0.67 and RMSE 17mm/hr. New algorithm shows the underestimating tendency in case of heavy rainfall event.

A Forecasting Model of Phytophthora Blight Incidence in Red Pepper and It′s Computer System (고추역병의 예찰모형과 컴퓨터 시스템)

  • 황의홍;이순구
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • Regression models were obtained on the base of the correlation between Phytophthora blight incidence in red pepper and the microclimate data obtained from automated weather station (AWS) during 1997 and 1998. A computer program (PEPBLIGHT) was constructed based on the model that the R2 value is highest among regression models. This computer program uses the microclimate data from more than one AWS through the common dialogue box easy and it is able provide disease forecasting information. In addition, it could be applied far other diseases and converts the microclimate data of AWS to the input data for Statical Analysis System (SAS). PEPBLIGHT was first developed for the forecasting computer system of red pepper blight in Korea. PEPBLIGHT is operated on the MS Windows, so that it is easy to use.

  • PDF

Regional Frequency Analysis for Urban Area Using AWS Rainfall Data (AWS 강우자료를 이용한 도시유역의 지역빈도해석 적용성에 관한 연구)

  • Kim, Soo-Young;Nam, Woo-Sung;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.209-213
    • /
    • 2007
  • 최근 우리나라에서는 기상이변과 기후변화에 의한 국지성 집중호우의 발생으로 인해 인명 및 재산 피해가 증가하고 있고, 특히 도시지역의 경우 산업화와 도시화로 인한 홍수량 및 첨두홍수량이 뚜렷하게 증가하고 있는 것으로 나타나고 있다. 이에 따라 기후변화와 도시화 등을 고려한 확률수문량의 재산정이 요구되고 있으며, 이를 위한 한 방법으로 지역빈도해석(regional frequency analysis)에 대한 연구가 꾸준히 진행되고 있으나 도시유역에 대한 지역빈도해석에 관한 연구는 미비한 실정이다. 따라서 본 연구에서는 도시지역에 대한 지역빈도해석의 적용성을 검토하기 위해 주요 도시유역을 분석대상으로 선정하고, 해당 도시유역 내의 AWS(Automatic Weather System) 자료를 수집한다. 대상지역의 AWS 자료를 구축한 후, 각각의 자료에 대해 대표적인 지역빈도해석 기법 중의 하나인 홍수지수법(Index Flood Method)을 적용하여 확률강우량을 산정하고 지점빈도해석 결과와 비교하여 도시유역에 대한 지역빈도해석의 적용성을 판단하고자 한다. 대상지역에 대한 홍수지수법의 적용결과를 살펴보면, 지점빈도해석에 의한 확률강우량보다 홍수지수법에 의해 산정된 확률강우량이 작게 추정되는 것으로 나타났다.

  • PDF

Assessment of Radar AWS Rainrate for Streamflow Simulation on Ungauged Basin (미계측 유역의 유출모의를 위한 RAR 자료의 적용성 평가 연구)

  • Lee, Byong-Ju;Ko, Hye-Young;Chang, Ki-Ho;Choi, Young-Jean
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.721-730
    • /
    • 2011
  • The objective of this study is to assess the availability of streamflow simulation using Radar-AWS Rain rate (RAR) data which is produced by KMA on real-time. Chuncheon dam upstream basin is selected as study area and total area is 4859.73 $km^2$. Mean Areal Precipitation (MAP) using AWS and RAR are calculated on 5 subbasin. The correlationship of hourly MAPs between AWS and RAR is weak on ungauged subbasins but that is relatively high on gauged ones. We evaluated the simulated discharge using the MAPs derived from two data types during flood season from 2006 to 2009. The simulated discharges using AWS on Chuncheon dam (gauged basin) are well fitted with measured ones. In some cases, however, discharges using AWS on Hwacheon dam and Pyeonghwa dam with some ungauged subbasins are overestimated on the other hand, ones using RAR in the same case are well fitted with measured ones. The hourly RAR data is useful for the real-time river forecast on the ungauged basin in view of the results.