Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.94-94
/
2011
최근에 산악지역에서의 국지성 강우에 의한 사고 발생이 증가하고 있고, 2009년에는 북한의 무단 댐방류로 인해 인명피해가 발생함에 따라서 산악이나 북한 지역과 같은 지역의 모니터링이 필요하게 되었으며, 강수량의 기후학적 분포의 특성과 같은 장기적인 강수량 정보가 필요하게 되었다. 레이더는 넓은 영역에 대해서 시 공간적으로 고해상도의 자료를 제공할 수 있기 때문에 국지 규모의 단시간 강수량 정보를 제공하는데 유용하다. 국립기상연구소(National Institute of Meteorological Research; NIMR)는 기존의 층운형 Z-R 관계식(Z=$200R^{1.6}$, Marshall-Palmer, 1948)을 이용한 레이더 강우강도 산출에서 과소추정 문제를 개선하기 위해 레이더-AWS 강우강도(Radar-AWS Rain rate; RAR) 산출 시스템을 개발하여 현재 운영하고 있다. RAR 산출 알고리즘은 각 레이더에 대해서 레이더 강우강도와 지상 AWS 우량계 자료를 비교하여 실시간으로 Z-R 관계식을 산출하여, 레이더 반사도를 강우강도로 변환하고, 이를 합성하여 한반도 영역에 대해서 강우강도 정보를 제공한다. 2010년에는 RAR 자료와 지상 AWS 우량계 자료를 이용하여 레이더-AWS 누적강수량을 산출하는 시스템을 구축하였으며, 현재 시험운영 중에 있다. 본 연구에서는 레이더-AWS 누적강수량의 정확도를 평가하기 위해서 2009년에 대해 레이더-AWS 누적강수량 자료와 지상 AWS 누적강수량 자료에 대해 RMSE, Bias 등의 통계값을 산출하였으며, 북한 지역에 대한 적용가능성을 분석하기 위해서 레이더 관측 반경 내의 북한 지역의 GTS 지점 자료를 이용하여 사례 분석하였다. 본 연구는 레이더 자료를 이용한 지상 관측 공백지역의 강수량에 대한 모니터링을 통하여 이러한 지역의 사고에 대비할 수 있고, 기후학적인 강수량 정보 제공 및 향후 유역별 레이더 면적강수지도 시험판 개발을 통하여 수문 기상 분야에 적용하여 효과적인 물관리에 기여할 수 있을 것으로 사료된다.
Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.3
/
pp.182-189
/
2016
For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.
AWS data can be used effectively to understand the rainfall characteristics in Korea. In spite of this advantage, AWS data have been used restrictively in flood control analysis and the study on water use analysis such as water balance assessment is very insufficient. In this study, AWS data are used to analyze spatial rainfall characteristics quantitatively and water balance assessment is performed based on AWS data. Water balance assessment is carried out from year 2002 to year 2010 considering water supply networks in Korea. The analysis shows that year 2009 is the driest year during 9 years (2002~2010) and the regions with low level water supply reliability are concentrated in the west coast of Jeonnam and the upper region of the Nakdong River. As a result, the regions that have a lack of available water resources such as the coastal and insular areas are vulnerable to droughts. Therefore, regional water supply and management plans are urgently needed. Additionally, AWS data, which consider rainfall characteristics of the coastal and insular areas, can be useful in water balance assessment.
Kim, Hyun-Jin;Jung, Seung-Hyun;Lee, Si-Woo;Min, Kyung-Duck
Journal of the Korean earth science society
/
v.23
no.7
/
pp.597-601
/
2002
Automatic Weather Systems (AWS) were placed at many educational as well as governmental institutes for the measurement of weather in Korea. However, weather information from AWS was not used as a real time system because of the complexity of the web display. For the web display ;ud automatic store of weather data to be used as a real time system, KNU Weather Now-V1.0 was developed. The system is very simple but useful for students and other users. Thus, everybody can use stored weather data and can process the data easily. This study focuses on the development of the system and the educational usage of AWS.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.221-221
/
2022
방재성능목표란 홍수, 호우 등으로부터 재해를 예방하기 위한 방재정책 등에 적용하기 위하여 처리 가능한 시간당 강우량 및 연속강우량의 목표로, 각 지자체별로 지역특성 및 경제여건 등을 고려하여 지역별 방재성능목표를 설정한다. 지역별 방재성능목표 기준을 설정하기 위해 전국을 168개 티센망으로 분류하고 69개 지점 확률강우량을 활용하여 지방자치단체별 확률강우량을 산정하고, 지방자치단체별 티센면적 비율을 감안하여 각 지자체별 방재성능목표 설정 기준을 마련한다. 이때 확률강우량 산정에 기상청에서 제공하는 종관기상관측(ASOS) 자료를 이용하는데, 종관기상관측(ASOS, Automated Synoptic Observing System)이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측으로, 종관규모는 일기도에 표현되어 있는 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 해당 지역의 현재 기상 실시간 제공 및 기상예보에 활용한다. 그러나 ASOS 자료로 산정한 확률강우량을 토대로 설정한 지역별 방재성능목표는 지배관측소개소 및 면적 비율에 따라 강우량이 실제 해당 지역에 내린 강우량에 비해 작거나 크게 산정되어 실제 강우량을 반영하지 못하는 문제가 발생한다. 이에 지진·태풍·홍수·가뭄 등 기상현상에 따른 자연재해를 막기 위해 실시하는 지상관측인 방재성능관측(AWS, Automatic Weather System)을 1997년부터 약 510여개 지점에 설치하여 기상관측자료를 구축하고 있으나, 관측자료가 30년 미만이므로 자료의 일관성 및 신뢰도 확보 등의 문제로 이용하고 있지 않다. 실제로 ASOS 관측소와 AWS 관측소의 시간 강우량 최댓값 차이가 큼에도 불구하고 행안부는 지역별 방재성능목표 수립을 위한 강우량 산정에서 AWS 관측소의 기록은 반영하지 않고 ASOS 관측소 기록만 적용하여 실제 해당 지역의 강우량을 반영하는 방재 대책을 수립하지 못하는 실정이다. 따라서 소규모 유역 및 재해영향평가 등의 경우 인근 지역에 AWS 관측소가 있을 경우, 해당지역의 기상 특성을 대변하는 자료로 보유관측년수가 30년 이상인 AWS 자료의 적극적인 활용이 필요할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.131-131
/
2011
기후변화로 인한 기상이변 현상이 빈번하게 발생하면서 홍수와 같은 자연재해의 피해규모가 증가하고 있다. 이를 극복하기 위해 최근에는 구조적 대책뿐만 아니라 홍수예측시스템과 같은 비구조적 대책에도 많은 관심과 연구가 이루어지고 있다. 통상 홍수예측을 위해서는 예측강우의 정확도가 중요하게 부각되지만 중규모 이상의 유역에서는 수 시간의 지체시간 효과로 인해 AWS 실황강우만으로도 어느정도 선행시간에 대해서 하천유량예측이 가능하다고 할 수 있다. 본 연구에서는 기상청 AWS 실황강우를 이용하여 하천유량을 예측할 경우 어느정도 선행시간과 정확도를 확보할 수 있는지에 대해서 분석하고자 한다. 분석을 위한 시단위 강우자료와 기상자료는 각각 AWS와 ASOS 자료를 이용하였다. 또한 하천유량 모의를 위한 강우-유출모형으로는 SURF 모델(Sejong University River Forecast Model)을 이용하였다. 이 모형은 저류함수모형 기반의 연속형 강우-유출모형으로 미래에 대한 유출모의결과의 정확도를 향상시키기 위해 앙상블 칼만필터링 기법을 연계한 모형이다. 그림 1은 충주댐유역에 대해서 2009.7.8~17일(240시간)에 대해서 관측유량 자료동화 전후의 결과를 나타낸 것이다. 현시점을 100, 105, 110, 115시간으로 가정하고 미래기간에 대해서는 관측강우를 0으로 가정했을 때 대략 첨두유량 발생 5시간 전에 예측된 모의유량이 관측유량과 거의 일치함을 확인할 수 있다. 따라서 실황강우와 관측유량 자료동화 기법을 연계할 경우 수 시간의 선행시간에 대해서 유량예측이 가능한 것으로 판단된다.
Rainfall estimation was conducted based on TRMM-PR/VIES and GMS data. AWS rainfall data were used for various validation. General procedure is as follows; 1) Z-R relationship was made by the comparison of TRMM-PR and AWS data. 2) new algorithm was developed by the estimates from Z-R equation and TBB of VIRS. 3) rainfall was estimated through the substitution of GMS data for TBB of VIRS in the newly developed algorithm. Z-R relationship based on TRMM is $Z=303R^{0.72}$ with correlation coefficient 0.57. The newly developed algorithm is shown as correlation coefficient 0.67 and RMSE 17mm/hr. New algorithm shows the underestimating tendency in case of heavy rainfall event.
Korean Journal of Agricultural and Forest Meteorology
/
v.3
no.1
/
pp.16-21
/
2001
Regression models were obtained on the base of the correlation between Phytophthora blight incidence in red pepper and the microclimate data obtained from automated weather station (AWS) during 1997 and 1998. A computer program (PEPBLIGHT) was constructed based on the model that the R2 value is highest among regression models. This computer program uses the microclimate data from more than one AWS through the common dialogue box easy and it is able provide disease forecasting information. In addition, it could be applied far other diseases and converts the microclimate data of AWS to the input data for Statical Analysis System (SAS). PEPBLIGHT was first developed for the forecasting computer system of red pepper blight in Korea. PEPBLIGHT is operated on the MS Windows, so that it is easy to use.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.209-213
/
2007
최근 우리나라에서는 기상이변과 기후변화에 의한 국지성 집중호우의 발생으로 인해 인명 및 재산 피해가 증가하고 있고, 특히 도시지역의 경우 산업화와 도시화로 인한 홍수량 및 첨두홍수량이 뚜렷하게 증가하고 있는 것으로 나타나고 있다. 이에 따라 기후변화와 도시화 등을 고려한 확률수문량의 재산정이 요구되고 있으며, 이를 위한 한 방법으로 지역빈도해석(regional frequency analysis)에 대한 연구가 꾸준히 진행되고 있으나 도시유역에 대한 지역빈도해석에 관한 연구는 미비한 실정이다. 따라서 본 연구에서는 도시지역에 대한 지역빈도해석의 적용성을 검토하기 위해 주요 도시유역을 분석대상으로 선정하고, 해당 도시유역 내의 AWS(Automatic Weather System) 자료를 수집한다. 대상지역의 AWS 자료를 구축한 후, 각각의 자료에 대해 대표적인 지역빈도해석 기법 중의 하나인 홍수지수법(Index Flood Method)을 적용하여 확률강우량을 산정하고 지점빈도해석 결과와 비교하여 도시유역에 대한 지역빈도해석의 적용성을 판단하고자 한다. 대상지역에 대한 홍수지수법의 적용결과를 살펴보면, 지점빈도해석에 의한 확률강우량보다 홍수지수법에 의해 산정된 확률강우량이 작게 추정되는 것으로 나타났다.
The objective of this study is to assess the availability of streamflow simulation using Radar-AWS Rain rate (RAR) data which is produced by KMA on real-time. Chuncheon dam upstream basin is selected as study area and total area is 4859.73 $km^2$. Mean Areal Precipitation (MAP) using AWS and RAR are calculated on 5 subbasin. The correlationship of hourly MAPs between AWS and RAR is weak on ungauged subbasins but that is relatively high on gauged ones. We evaluated the simulated discharge using the MAPs derived from two data types during flood season from 2006 to 2009. The simulated discharges using AWS on Chuncheon dam (gauged basin) are well fitted with measured ones. In some cases, however, discharges using AWS on Hwacheon dam and Pyeonghwa dam with some ungauged subbasins are overestimated on the other hand, ones using RAR in the same case are well fitted with measured ones. The hourly RAR data is useful for the real-time river forecast on the ungauged basin in view of the results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.