• Title/Summary/Keyword: AVL Cruise

Search Result 14, Processing Time 0.02 seconds

Effect of Lock-up Control Strategy on Vehicle Fuel Economy (자동변속기 차량의 직결영역 변화에 따른 연비 특성에 관한 연구)

  • Kim, Woo-Seok;Han, Chang-Ho;Kim, Nam-Kyun;Park, Kyung-Seok;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2006
  • Experiments are conducted to compare fuel economy of FTP-75 mode on two different lock-up conditions; (A) Lock-up on at engine speed of 1,200(rpm) and above for 3rd & 4th gear, (B) Lock-up on at engine speed of 1400rpm and above for 4th gear only. As a result, case A had better fuel economy about 2.75(%) than case B for FTP-75 mode. Simulation(CRUISE, AVL) study is also carried out in order to estimate the effect of Lock-up control strategy for vehicle fuel economy. The fuel economy simulation result agrees with the measured fuel economy within error of 2(%). The improved Lock-up control strategy is proposed by simulation.

Analysis of Fuel Economy Sensitivity for Parallel Hybrid Bus according to Variation of Simulation Input Parameter (병렬형 하이브리드 버스의 시뮬레이션 입력 매개변수 변화에 따른 연비 민감도 분석)

  • Choi, Jongdae;Jeong, Jongryeol;Lee, Daeheung;Shin, Changwoo;Park, Yeong-Il;Lim, Wonsik;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.92-99
    • /
    • 2013
  • High oil price and global warming problem are being continued all over the world. For this reason, fuel economy and emission of greenhouse gas are regulated by law in many countries. Therefore many companies are researching and producing hybrid electric vehicles (HEVs) which substitute conventional internal combustion engine vehicle. However, these researches and productions are restricted to mainly passenger cars. Because of cost and physical problems, commercial vehicles are difficult to evaluate fuel economy. So simulations are important and it is necessary to know how sensitive parameters that enter into simulation affect. In this paper, forward simulations using AVL Cruise were conducted for analysis of fuel economy for parallel hybrid bus and were repeated by changing each parameter. Based on these results, root mean square errors (RMSE) are calculated for analysis of fuel economy sensitivity. The number of target parameters are 15. These parameters were classified with high and low sensitivity parameter relatively.

Experimental and Numerical Assessment of the Effects of Various Coolant Temperature in Gasoline Vehicle on Fuel Consumption and Emissions (냉각수온 변화가 가솔린 차량의 연비 및 배출가스에 미치는 영향에 관한 실험 및 수치적 평가)

  • Jeong, SooJin;Kim, SeoKyu;Lee, GumSu;Jeong, Jinwoo;Kim, MyungHwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • One of the major engine thermal management system(TMS) strategies for improving fuel economy is to operate the engine in high temperatures. Therefore, this work performed a numerical and experimental study to examine the effect of several different STOs(Starting Temperature of Opening) of wax-thermostat, ranging from $85^{\circ}C$ to $105^{\circ}C$, of gasoline engine on fuel economy and emission characteristics. In this study, a gasoline car equipped with waxthermostat was tested and simulated under FTP-75 and HWFET mode. CRUISE $M^{TM}$ was used to simulate vehicle dynamics, transient engine performance and TMS. The test results showed fuel savings for both drive cycles due to higher STO of $100^{\circ}C$, which is slightly worse than that of $90^{\circ}C$ and amounts between 0.34 and 0.475 %. These controversial results are attributed to experimental errors and uncertainty. The computational results for three STOs, $85^{\circ}C$, $95^{\circ}C$ and $105^{\circ}C$, showed that fuel savings attributed to the application of higher STOs of $95^{\circ}C$ and $105^{\circ}C$ are relatively small and range from 0.306 to 0.363 %. It is also found that the amount of HC and CO emissions from the tailpipe tends to decrease with higher engine coolant temperature because of faster catalyst light-off and improved combustion.

A Study of Torque Vectoring Application in Electric Vehicle for Driving Stability Performance Evaluation (토크 벡터링을 적용한 전기차의 선회 성능 평가에 관한 연구)

  • Yi, JongHyun;Lee, Kyungha;Kim, Ilho;Jeong, Deok-Woo;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.250-256
    • /
    • 2014
  • EV(Electric Vehicle) has many benefits such as prevention of global warming and so on. But due to driving source changing from combustion engine to battery and e-motor, new R&D difficulties have arisen which changing of desired vehicle performance and multidisciplinary design constraints by means of strong coupled multi-physics domain problems. Additionally, dynamics performances of EV becomes more important due to increasing customer's demands and expectations for EV in compare with internal combustion engine vehicle. In this paper suggests model based development platform of EV through integrated simulation environment for improving analyse & design accuracy in order to solve multi-physics problem. This simulation environment is integrated by three following specialized simulation tools IPG CarMaker, AVL Cruise, DYMOLA that adapted to each purpose. Furthermore, control algorithm of TV(Torque Vectoring) system is developed using independent driven e-motor at rear wheels for improving handling performance of EV. TV control algorithm and its improved vehicle performances are evaluated by numerical simulation from standard test methods.