• Title/Summary/Keyword: AVERAGE PARTICLE SIZE

Search Result 1,037, Processing Time 0.021 seconds

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Distribution of natural radionuclide in the Geum river sediment (금강수계 퇴적물 중 천연 방사성핵종 분포 조사)

  • Seol, Bitna;Cho, Yoonhae;Min, Kyungok;Kim, Wansuk;Oh, Dayeon;Kil, Gibeom;Yang, Yunmo;Lee, Junbae;Kim, Byungik;Cheon, Seok
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.262-269
    • /
    • 2017
  • The concentration of natural radioactivity in the sediment of the Geum River was investigated. The river and lake sediment samples were collected at 23 points during September to November, 2015 and March to April, 2015, respectively. The gamma-rays emitted from the $^{226}Ra$ and $^{232}Th$ decay series and $^{40}K$ were measured with a high purity germanium (HPGe) gamma detector. The average radioactivity concentrations of the $^{226}Ra$, $^{232}Th$ decay series and $^{40}K$ for the river sediment was found to be $15.6{\pm}0.6$, $33.8{\pm}1.2$, $789.8{\pm}26.0Bq/kg$, respectively, while for the lake sediment, the concentrations were $17.1{\pm}0.5$, $37.8{\pm}1.1$, $269.4{\pm}9.6Bq/kg$, respectively. Spearman's correlation was conducted to compare the radioactivity concentration and properties of the sediment. The radioactivity concentration of the $^{232}Th$ decay series showed a negative correlation with the particle size of the sediment, and was measured to be higher than the $^{226}Ra$ decay series according to mobility of the radionuclides. The radioactivity concentration of $^{40}K$ showed a negative correlation with organic matter content. The concentration of $^{40}K$ in the lake sediment was lower than that in the river sediment.

A Comparison Study of Aerosol Samplers for PM10 Mass Concentration Measurement (PM10 질량농도 측정을 위한 시료채취기의 비교 연구)

  • Park, Ju-Myon;Koo, Ja-Kon;Jeong, Tae-Young;Kwon, Dong-Myung;Yoo, Jong-Ik;Seo, Yong-Chil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A PM10 (aerodynamic diameter${\leq}$10 ${\mu}m$) sampler is used to quantify the potential human exposure to suspended particulate matter (PM) and to comply with the governmental regulation. This study was conducted to compare and evaluate the same PM10 cutpoint and different slopes between United States Environmental Protection Agency (USEPA) PM10 sampling criterion and American Conference of Governmental Industrial Hygienists/$Comit\acute{e}$ $Europ\acute{e}en$ de Normalization/International Organization for Standardization thoracic PM10 sampling criterion through theory and experiment. Four PM10 samplers according to the USEPA criterion and one RespiCon sampler in accordance with the thoracic PM10 criterion were used in the present study. In addition, one DustTrak monitor was used to measure real time PM10 mass concentrations. All six aerosol samplers were tested in a PM generation chamber using polydisperse fly ash. Theoretical mass concentrations were calculated by applying the measured particle size distribution characteristics (geometric mean = 6.6 ${\mu}m$, geometric standard deviation = 1.9) of fly ash to each sampling criterion. The measured mass concentrations through a chamber experiment were consistent with theoretical mass concentrations in that a RespiCon sampler with the thoracic PM10 criterion collected less PM than a PM10 sampler with the USEPA criterion. The overall chamber experiment results indicated, when a PM10 sampler was used as a reference sampler, that (1) a RespiCon sampler had a normalizing factor of 1.6, meaning that this sampler underestimated an average 60% of PM10 mass sampled from a PM10 sampler, and (2) a DustTrak real-time monitor using a PM10 inlet had a calibration factor of 2.1.

The Study of PM10, PM2.5 Mass Extinction Efficiency Characteristics Using LIDAR Data (라이다 데이터를 이용한 PM10, PM2.5 질량소산효율 특성 연구)

  • Kim, TaeGyeong;Joo, Sohee;Kim, Gahyeong;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1793-1801
    • /
    • 2021
  • From 2015 to June 2020, the backscattering coefficients of 532 and 1064 nm measured using LIDAR and the depolarization ratio at 532 nm were used to separate the backscattering coefficient at 532 nm as three types as PM10, PM2.5-10, PM2.5 according to particle size. The mass extinction efficiency (MEE) of three types was calculated using the mass concentration measured on the ground. The overall mean values of the calculated MEE were 5.1 ± 2.5, 1.7 ± 3.7, and 9.3 ± 6.3 m2/g in PM10, PM2.5-10, and PM2.5, respectively. When the mass concentration of PM10 and PM2.5 was low, higher than average MEE was calculated, and it was confirmed that the MEE decreased as the mass concentration increased. When the MEE was calculated for each type according to the mixing degree of Asian dust, PM2.5-10 was twice at pollution aerosol as high as 2.1 ± 2.8 m2/g, compare to pollution-dominated mixture, dust-dominated mixture, and pure dust of 1.1 ± 1.8, 1.4 ± 3.3, 1.1 ± 1.5 m2/g, respectively. However, PM2.5 MEE showed similar values irrespective of type: 9.4 ± 6.5, 9.0 ± 5.8, 10.3 ± 7.5, and 9.1 ± 9.0 m2/g. The MEE of PM10 was 5.6 ± 2.9, 4.4 ± 2.0, 3.6 ± 2.9, and 2.8 ± 2.4 m2/g in pollution aerosol (PA), pollution-dominated mixture (PDM), dust-dominated mixture (DDM), and pure dust (PD), respectively, and increased as the dust ratio value decreased. Even if the same type according to the same mass concentration or Asian dust mixture was shown, as the PM2.5/PM10 ratio decreased, the MEE of PM2.5-10 decreased and the MEE of PM2.5 showed a tendency to increase.

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

Effect of Oil in Water Nanoemulsion Containing a Mixture of Lactic Acid and Gluconolactone for Skin Barrier Improvement (유산 및 글루코노락톤 혼합물을 함유하는 수중유형 나노에멀젼의 피부장벽개선 효과)

  • Ji-Hye Hong;Young Duck Choi;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.905-914
    • /
    • 2023
  • To evaluate the effectiveness of the skin barrier improvement of lactic acid (LA) and gluconolactone (GL), the expression of filaggrin, loricrin, hyaluronic acid (HA), hyaluronan syhthase-2 (HAS2), and aquaporine-3 (AQP3) in keratinocytes, and the moisture content and transepidermal water loss (TEWL) by clinical trials were evaluated. The expression levels of filaggrin and locricrin, which are the main factors affecting the proper functioning of skin barrier function, and HA, HAS2, and AQP3, which are skin moisturizing-related proteins measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The results showed that the expression levels of the factors that decreased by H2O2 treatment were significantly increased by LA, GL, and a mixture of LA and GL at the mRNA and protein levels (p<0.05). The nanoemulsion containing a mixture of LA and GL was prepared using the emulsion inversion method, and the average particle size was 299.9 ± 0.287 nm. After measuring the TEWL of nanoemulsion using Vapometer, it was found that TEWL significantly decreased by 15.53% and 26.73% after two weeks and four weeks of product use, respectively, compared to TEWL before product use (p<0.001). Similarly, the skin moisture content of the nanoemulsion significantly increased by 15.40% and 26.59% after two weeks and four weeks of product use, respectively, compared to skin moisture content before product use (p<0.001). Therefore, the skin barrier function and moisturizing effect of a mixture of LA and GL are shown by increasing the moisture content and decreasing the TEWL by increasing the expression of filaggrin, loricrin, HA, HAS2, and AQP3. This suggests the possibility for the development of functional cosmetic ingredients in the future.