• Title/Summary/Keyword: ATP depletion

Search Result 45, Processing Time 0.027 seconds

Alterations in Membrane Transport Function and Cell Viability Induced by ATP Depletion in Primary Cultured Rabbit Renal Proximal Tubular Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide(KCN)/0.1 mM iodoacetic acid(IAA), and membrane transport function and cell viability were evaluated by measuring $Na^+$-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in $Na^+$-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited $Na^+$-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a $Na^+$ pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in $Na^+$-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers(dimethylthiourea and thiourea), and amino acids(glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase $A_2(cPLA_2)$. The ATP depletion-dependent arachidonic acid release was inhibited by $cPLA_2$ specific inhibitor $AACOCF_3$. ATP depletion-induced alterations in $Na^+$-dependent phosphate uptake and cell viability were prevented by $AACOCF_3$. Inhibition of $Na^+$-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and $cPLA_2$ activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.

Glucose Deprivation and Immunostimulation Induced Death in Rat Primary Astrocytes is Mediated by Their Synergistic Effect on the Decrease in Cellular ATP Level

  • Choi, Ji-Woong;Yoo, Byoung-Kwon;Yoon, Seo-Young;Jeon, Mi-Jin;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2004
  • In this study we investigated whether ATP loss was involved in the potentiated death of immunostimulated rat primary astrocytes in glucose-deprived condition. Rat primary astrocytes immunostimulated with LPS plus IFN-${\gamma}$ for 48 h underwent death upon glucose deprivation, which dependent on the production of peroxynitrite. Intracellular ATP level synergistically decreased by glucose deprivation in immunostimulated astrocytes but not in control cells, and the loss of ATP occurred well ahead of the LDH release. The synergistic cell death and ATP loss by immunostimulation and glucose deprivation were inhibited by iNOS inhibitor (L-NAME and L-NNA) or peroxynitrite decomposition catalyst (also a superoxide anion scavenger), Mn(III)tetrakis(N-methyl-4'-pyridyl)porphyrin (MnTMPyP). Exogenous addition of peroxynitrite generator, SIN-l timedependently induced ATP loss and cell death in the glucose-deprived astrocytes. Depletion of intracellular glutathione (GSH) and dis겨ption of mitochondrial transmembrane potential (MTP) were also observed under same conditions. Supply cellular ATP by the addition of exogenous adenosine or ATP during glucose deprivation inhibited ATP depletion, GSH depletion, MTP disruption and cell death in SIN-l treated or immunostimulated astrocytes. This study showed that perturbation in the regulation of intracellular ATP level in immunostimulated astrocytes might make them more vulnerable to energy challenging stimuli.

Regulation of circulating Mg2+ concentration in rats by ATP depletion (흰쥐에서 ATP 결핍에 의한 혈중 Mg2+ 농도조절)

  • Kim, Shang-jin;Baek, Sung-soo;Shim, So-yeon;Oh, Sung-suck;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.267-274
    • /
    • 2000
  • Since intracellular free $Mg^{2+}$ ($[Mg^{2+}]_i$) appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion into circulation. Extracellualr $Mg^{2+}$ contents ($[Mg^{2+}]_o$) were measured in rat erythrocytes, the perfused heart and liver, and plasma in the anesthetized rat. Animals were injected intraperitoneally with sodium nitrite ($NaNO_2$) and plasma $Mg^{2+}$ was measured after the injection and then 10 and 20 minutes later. An increase in circulating (plasma) $Mg^{2+}$ ($[Mg^{2+}]_c$) and methemoglobin was observed in animals injected with $NaNO_2$ (30 mg/Kg). The time course of the effects demonstrated that $[Mg^{2+}]_c$ and methemoglobin continued to increase 10 minutes after the $NaNO_2$ injection. Under these conditions, there was a sustained increase in $[Mg^{2+}]_c$, but not in methemoglobin, which was inhibited by pretreatment with potassium cyanide (KCN, 4 mg/Kg), indicating that an increase in $[Mg^{2+}]_c$ was accompanied by ATP depletion. Injection of rotenone (0.9 mg/Kg) or 2,4-dinitrophenol (15 mg/Kg) also induced an increase in $[Mg^{2+}]_c$. Reduced respiration rate from 100/min to 10/min during 30 minutes also caused a time-dependent rise in $[Mg^{2+}]_c$. These increase in $[Mg^{2+}]_c$ were inhibited by pretreatment with KCN. In addition, ATP depletion by $NaNO_2$ or KCN sustainedly increased the $[Mg^{2+}]_o$ in rat erythrocytes. $Mg^{2+}$ efflux was stimulated by KCN in the perfused heart and liver, but not by $NaNO_2$. These results suggest that the activation of $Mg^{2+}$ effluxes into the circulation is directly dependent on the ATP depletion-induced increase in $[Mg^{2+}]_i$ and heart, liver and erythrocytes have a major pool of $Mg^{2+}$ that can be mobilized upon cellular energy state.

  • PDF

Regulation of Magnesium Release by cAMP during Chemical Hypoxia in the Rat Heart and Isolated Ventricular Myocytes

  • Kim, Jin-Shang;Scarpa, Antonio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • Chemically induced hypoxia has been shown to induce a depletion of ATP. Since intracellular free $Mg^{2+}\;([Mg^{2+}]_i)$ appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion following hormonal stimulation. To determine the relation between $Mg^{2+}$ efflux and cellular energy state in a hypoxic rat heart and isolated myocytes, $[Mg^{2+}]_i,$ ATP and $Mg^{2+}$ content were measured by using mag-fura-2, luciferin-luciferase and atomic absorbance spectrophotometry. $Mg^{2+}$ effluxes were stimulated by norepinephrine (NE) or cAMP analogues, respectively. $Mg^{2+}$ effluxes induced by NE or cAMP were more stimulated in the presence of metabolic inhibitors (MI). Chemical hypoxia with NaCN (2 mM) caused a rapid decrease of cellular ATP within 1 min. Measurement of $[Mg^{2+}]_i$ confirmed that ATP depletion was accompanied by an increase in $[Mg^{2+}]_i.$ No change in $Mg^{2+}$ efflux was observed when cells were incubated with MI. In the presence of MI, the cAMP-induced $Mg^{2+}$ effluxes were inhibited by quinidine, imipramine, and removal of extracellular $Na^+.$ In addition, after several min of perfusion with $Na^+-free$ buffer, a large increase in $Mg^{2+}$ efflux occurred when $Na^+-free$ buffer was switched to 120 mM $Na^+$ containing buffer. A similar $Mg^{2+}$ efflux was observed in myocytes. These effluxes were inhibited by quinidine and imipramine. These results indicate that the activation of $Mg^{2+}$ effluxes by hormonal stimulation is directly dependent on intracellular $Mg^{2+}$ contents and that these $Mg^{2+}$ effluxes appear to occur through the $Na^+-dependent\;Na^+/Mg^{2+}$ exchange system during chemical hypoxia.

  • PDF

Mitochondrial fatty acid metabolism in acute kidney injury

  • Jang, Hee-Seong;Padanilam, Babu J.
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2018
  • Mitochondrial injury in renal tubule has been recognized as a major contributor in acute kidney injury (AKI) pathogenesis. Ischemic insult, nephrotoxin, endotoxin and contrast medium destroy mitochondrial structure and function as well as their biogenesis and dynamics, especially in renal proximal tubule, to elicit ATP depletion. Mitochondrial fatty acid ${\beta}$-oxidation (FAO) is the preferred source of ATP in the kidney, and its impairment is a critical factor in AKI pathogenesis. This review explores current knowledge of mitochondrial dysfunction and energy depletion in AKI and prospective views on developing therapeutic strategies targeting mitochondrial dysfunction in AKI.

Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells

  • Lee, Yoon-Jin;Park, Kwan-Sik;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.493-502
    • /
    • 2020
  • Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (ΔΨm), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)-histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.

Disruption of ATP binding destabilizes NPM/B23 and inhibits anti-apoptotic function

  • Choi, Joung-Woo;Lee, Sang-Bae;Ahn, Jee-Yin;Lee, Kyung-Hoon
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.840-845
    • /
    • 2008
  • Nucleophosmin/B23, a major nucleolar phosphoprotein, is overexpressed in actively proliferating cells. In this study, we demonstrate that B23 exclusively localizes in the nucleolus, whereas ATP depletion results in the redistribution of B23 throughout the whole nucleus and destabilizes B23 via caspase-3 mediated cleavage. Interestingly, ATP binding precedes PI(3,4,5)P3 binding at lysine 263 and ATP binding mutants fail to restore the anti-apoptotic functions of B23 in PC12 cells. Thus, the ATP-B23 interaction is required for the stability of the B23 protein and regulates cell survival, confining B23 within the nucleolus in PC12 cells.

Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells (알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도)

  • Kim, Il-Rang;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.

Cytotoxicity of Vibrio vulnificus Cytolysin on Rat Neutrophils

  • Park, Kwang-Hyun;Rho, In-Whan;Park, Byung-Hyun;Kim, Jong-Suk;Kim, Hyung-Rho
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.273-278
    • /
    • 1999
  • Cytolysin produced by Vibrio vulnificus has been known to be lethal to mice by increasing vascular permeability and neutrophil sequestration in the lung. In the present study, a cytotoxic mechanism of V. vulnificus cytolysin on the neutrophil was investigated. Cytolysin rapidly bound to neutrophils and induced cell death, as determined by the trypan blue exclusion test. V. vulnificus cytolysin caused the depletion of cellular ATP without the release of ATP or lactate dehydrogenase. Formation of transmembrane pores was evidenced by the rapid efflux of potassium and 2-deoxy-D-[$^3H$]glucose from cytolysin-treated neutrophils. It was further confirmed by the rapid flow of monovalent ions in the patch clamp of cytolysin-treated neutrophil membrane. The pore formation was accompanied by the oligomerization of cytolysin monomers on the neutrophil membrane as demonstrated by immunoblot, which exhibited a 210 kDa band corresponding to a tetramer of the native cytolysin of $M_r$ 51,000. These findings indicate that V. vulnificus cytolysin rapidly binds to the neutrophil membrane and oligomerizes to form small transmembrane pores, which induce the efflux of potassium and the depletion of cellular ATP leading to cell death without cytolysis.

  • PDF

Beneficial Effect of Scutellaria baicalensis Georgi Extract on Mercury Chloride-Induced Membrane Transport Dysfunction in Rabbit Renal Cortical Slices (황금약침액(黃芩藥鍼液)이 가토(家兎) 신피질절편(腎皮質切片)에서 수은(水銀)에 의한 세포막(細胞膜) 물질이동(物質移動) 기능장애(機能障碍)에 미치는 영향(影響))

  • Kim, Hong-Soo;Song, Choon-Ho
    • Journal of Pharmacopuncture
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • This study was undertaken to determine whether Scutellaria baicalensis Georgi (SbG) extract exerts the protective effect against $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. The slices were treated with 0.1 mM $HgCl_2$ for 60 min at $37^{\circ}C$. $HgCl_2$ caused an inhibition in PAH uptake by renal cortical slices. Such an effect was accompanied by depressed $Na^+-K^+$-ATPase activity and ATP depletion. SbG prevented $HgCl_2$-induced inhibition of PAH uptake in a dose-dependent manner at the concentration ranges of 0.01-0.1%. $HgCl_2$-induced inhibition of $Na^+-K^+$-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. These results suggest that SbG prevents $HgCl_2$-induced alterations in membrane transport function in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.