• Title/Summary/Keyword: ATENA-GID software

Search Result 2, Processing Time 0.019 seconds

Numerical analysis for the punching shear resistance of SFRC flat slabs

  • Baraa J.M. AL-Eliwi;Mohammed S. Al Jawahery
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.425-438
    • /
    • 2023
  • In this article, the performance of steel fiber-reinforced concrete (SFRC) flat slabs was investigated numerically. The influence of flexural steel reinforcement, steel fiber content, concrete compressive strength, and slab thickness were discussed. The numerical model was developed using ATENA-Gid, user-friendly software for non-linear structural analysis for the evaluation and design of reinforced concrete elements. The numerical model was calibrated based on eight experimental tests selected from the literature to validate the actual behavior of steel fiber in the numerical analysis. Then, a parametric study of 144 specimens was generated and discussed the impact of various parameters on the punching shear strength, and statistical analysis was carried out. The results showed that slab thickness, steel fiber content, and concrete compressive strength positively affect the punching shear capacity. The fib Model Code 2010 for specimens without steel fibers and the model of Muttoni and Ruiz for SFRC specimens presented a good agreement with the results of this study.

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.