• Title/Summary/Keyword: ATENA-3D

Search Result 5, Processing Time 0.016 seconds

Numerical analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehlinga, Ekkehard
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.263-273
    • /
    • 2017
  • In this paper, a finite element model (FEM) in ATENA-3D software was constructed to investigate the behavior of circular ultra high performance concrete (UHPC) filled steel tube stub columns (UHPC-FSTCs) under concentric loading on concrete core. The "CC3DNonLinCementitious2User" material type for concrete in ATENA-3D software with some modifications of material laws, was adopted to model for UHPC core with consideration the confinement effect. The experimental results obtained from Schneider (2006) were then employed to verify the accuracy of FEM. Extensive parametric analysis was also conducted to examine the influence of concrete compressive strength, steel tube thickness and steel yield strength on the compressive behavior of short circular UHPC-FSTCs. It can be observed that the columns with thicker steel tube show better strength and ductility, the sudden drop of load after initial peak load can be prevented. Based on the regression analysis of the results from parametric study, simplified formulae for predicting ultimate loads and strains were proposed and verified by comparing with previous analytical models, design codes and experimental results.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Behaviour of bolted connections in concrete-filled steel tubular beam-column joints

  • Beena, Kumari;Naveen, Kwatra;Shruti, Sharma
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.443-456
    • /
    • 2017
  • Many authors have established the usefulness of concrete filled steel tubular (CFST) sections as compression members while few have proved their utility as flexural members. To explore their prospective as part of CFST frame structures, two types of connections using extended end plate and seat angle are proposed for exterior joints of CFST beams and CFST columns. To investigate the performance and failure modes of the proposed bolted connections subjected to static loads, an experimental program has been executed involving ten specimens of exterior beam-to-column joints subjected to monotonically increasing load applied at the tip of beam, the performance is appraised in terms of load deformation behaviour of joints. The test parameters varied are the beam section type, type and diameter of bolts. To validate the experimental behaviour of the proposed connections in CFST beam-column joints, finite element analysis for the applied load has been performed using software ATENA-3D and the results of the proposed models are compared with experimental results. The experimental results obtained agree that the proposed CFST beam-column connections perform in a semi-rigid and partial strength mode as per specification of EC3.

3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams

  • Al Jawahery, Mohammed S.;Cevik, Abdulkadir;Gulsan, Mehmet Eren
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.45-69
    • /
    • 2022
  • This paper investigates the shear behavior of reinforced concrete haunched beams (RCHBs) without stirrups. The research objective is to study the effectiveness of the ideal steel fiber (SF) ratio, which is used to resist shear strength, besides the influence of main steel reinforcement, compressive strength, and inclination angles of the haunched beam. The modeling and analysis were carried out by Finite Element Method (FE) based on a software package, called Atena-GiD 3D. The program of this study comprises two-part. One of them consists of nine results of experimental SF RCHBs which are used to identify the accuracy of FE models. The other part comprises 81 FE models, which are divided into three groups. Each group differed from another group by the area of main steel reinforcement (As) which are 226, 339, and 509 mm2. The other parameters which are considered in each group in the same quantities to study the effectiveness of them, were steel fiber volumetric ratios (0.0, 0.5, and 1.0)%, compressive strength (20.0, 40.0, 60.0) MPa, and the inclination angle of haunched beam (0.0°, 10.0°, and 15.0°). Moreover, the parametric analysis was carried out on SF RCHBs to clarify the effectiveness of each parameter on the mechanical behavior of SF RCHBs. The results show that the correlation coefficient (R2) between shear load capacities of FE proposed models and shear load capacities of experimental SF RCHBs is 0.9793, while the effective inclination angle of the haunched beam is 10° which contributes to resisting shear strength, besides the ideal ratio of steel fibers is 1% when the compressive strength of SF RCHBs is more than 20 MPa.